Skip to main content
Log in

Advances in electrokinetics and their applications in micro/nano fluidics

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electrokinetic phenomena originally developed in colloid chemistry have drawn great attention in micro- and nano-fluidic lab-on-a-chip systems for manipulation of both liquids and particles. Here we present an overview of advances in electrokinetic phenomena during recent decades and their various applications in micro- and nano-fluidics. The advances in electrokinetics are generally classified into two categories, namely electrokinetics over insulating surfaces and electrokinetics over conducting surfaces. In each category, the phenomena are further grouped according to different physical mechanisms. For each category of electrokinetics, the review begins with basic theories, and followed by their applications in micro- and/or nano-fluidics with highlighted disadvantages and advantages. Finally, the review is ended with suggested directions for the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758

    Article  Google Scholar 

  • Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61:R45–R48

    Article  Google Scholar 

  • Ajdari A (2001) Transverse electrokinetic and microfluidic effects in micropatterned channels: Lubrication analysis for slab geometries. Phys Rev E 65:016301

    Article  Google Scholar 

  • Ajdari A, Bocquet L (2006) Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys Rev Lett 96:186102

    Article  Google Scholar 

  • Anderson JL (1985) Effect of nonuniform zeta potential on particle movement in electric fields. J Colloid Interface Sci 105:45–54

    Article  Google Scholar 

  • Anderson JL (1989) Colloid Transport by Interfacial Forces. Annu Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  • Anderson JL, Idol WK (1985) Electroosmosis through pores with nonuniformly charged walls. Chem Eng Commun 38:93–106

    Article  Google Scholar 

  • Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245–255

    Article  MATH  Google Scholar 

  • Barany S, Mishchuk NA, Prieve DC (1998) Superfast electrophoresis of conducting dispersed particles. J Colloid Interface Sci 207:240–250

    Article  Google Scholar 

  • Bardeen J (1947) Surface states and rectification at a metal semi-conductor contact. Phys Rev 71:717–727

    Article  Google Scholar 

  • Barrat JL, Bocquet L (1999a) Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss 112:119–128

    Article  Google Scholar 

  • Barrat JL, Bocquet L (1999b) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82:4671–4674

    Article  Google Scholar 

  • Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6:1455–1461

    Article  Google Scholar 

  • Bazant MZ, Squires TM (2004) Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys Rev Lett 92:066101

    Article  Google Scholar 

  • Bazant MZ, Squires TM (2010) Induced-charge electrokinetic phenomena. Curr Opin Colloid Interface Sci 15:203–213

    Article  Google Scholar 

  • Bazant MZ, Thornton K, Ajdari A (2004) Diffuse-charge dynamics in electrochemical systems. Phys Rev E 70:021506

    Article  Google Scholar 

  • Bazant MZ, Kilic MS, Storey BD, Ajdari A (2009) Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Colloid Interface Sci 152:48–88

    Article  Google Scholar 

  • Belyaev AV, Vinogradova OI (2011) Electro-osmosis on anisotropic superhydrophobic surfaces. Phys Rev Lett 107:098301

    Article  Google Scholar 

  • Ben Y, Chang HC (2002) Nonlinear smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238

    Article  MathSciNet  MATH  Google Scholar 

  • Ben Y, Demekhin EA, Chang HC (2004) Nonlinear electrokinetics and “superfast” electrophoresis. J Colloid Interface Sci 276:483–497

    Article  Google Scholar 

  • Bockris JOM, Reddy AKN (2004) Modern electrochemistry 2B: electrodics in chemistry, engineering, biology, and environmental science. Kluwer Academic Publishers, New York

    Google Scholar 

  • Bockris JOM, Reddy AKN, Gamboa-Aldeco ME (2002) Modern electrochemistry 2A: fundamentals of electrodics. Kluwer Academic Publishers, New York

    Google Scholar 

  • Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3:685–693

    Article  Google Scholar 

  • Brotherton CM, Davis RH (2004) Electroosmotic flow in channels with step changes in zeta potential and cross section. J Colloid Interface Sci 270:242–246

    Article  Google Scholar 

  • Chen JK, Weng CN, Yang RJ (2009) Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel. Lab Chip 9:1267–1273

    Article  Google Scholar 

  • Cheng L-J, Guo LJ (2010) Nanofluidic diodes. Chem Soc Rev 39:923–938

    Article  Google Scholar 

  • Chiara N, Drew RE, Elmar B, Hans-Jürgen B, Vincent SJC (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859

    Article  Google Scholar 

  • Chu KT, Bazant MZ (2006) Nonlinear electrochemical relaxation around conductors. Phys Rev E 74:011501

    Article  Google Scholar 

  • Constantin D, Siwy ZS (2007) Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys Rev E 76:041202

    Article  Google Scholar 

  • Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E (2005) Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys Rev Lett 94:056102

    Article  Google Scholar 

  • Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87:054504

    Article  Google Scholar 

  • Daghighi Y, Li D (2010) Induced-charge electrokinetic phenomena. Microfluid Nanofluid 9:593–611

    Article  Google Scholar 

  • Daghighi Y, Gao Y, Li D (2011) 3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochim Acta 56:4254–4262

    Article  Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2003) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280

    Article  Google Scholar 

  • Davidson C, Xuan X (2008) Electrokinetic energy conversion in slip nanochannels. J Power Sources 179:297–300

    Article  Google Scholar 

  • Delgado ÁV, Arroyo FJ (2002) Electrokinetic phenomena and their experimental determination: an overview. In: Delgado ÁV (ed) Interfacial electrokinetics and electrophoresis. Marcel Dekker, New York

    Google Scholar 

  • Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309:194–224

    Article  Google Scholar 

  • Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol 5:848–852

    Article  Google Scholar 

  • Dukhin AS (1986) Pair interaction of disperse particles in electric field. 3. Hydrodynamic interaction of ideally polarizable metal particles and dead biological cells. Colloid J USSR 48:376–381

    Google Scholar 

  • Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196

    Article  Google Scholar 

  • Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interface Sci 44:1–134

    Article  Google Scholar 

  • Dukhin AS, Murtsovkin VA (1986) Pair interaction of particles in electric field. 2. influence of polarization of double layer of dielectric particles on their hydrodynamic interaction in a stationary electric field. Colloid J USSR 48:203–209

    Google Scholar 

  • Dukhin SS, Shilov VN (1969) Theory of the static polarization of the diffuse part of the thin double layer of spherical particles. Colloid J USSR 31:564–570

    Google Scholar 

  • Dukhin SS, Tarovskii AA, Baran AA (1989) Electrophoresis of the second kind for metallic particles. Colloid J USSR 50:1058–1059

    Google Scholar 

  • Eijkel J (2007) Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab Chip 7:299–301

    Article  Google Scholar 

  • Fan R, Yue M, Karnik R, Majumdar A, Yang P (2005) Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys Rev Lett 95:086607

    Article  Google Scholar 

  • Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307

    Article  Google Scholar 

  • Gamayunov NI, Murtsovkin VA, Dukhin AS (1986) Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles. Colloid J USSR 48:197–203

    Google Scholar 

  • Gamayunov NI, Mantrov GI, Murtsovkin VA (1992) Study of flows induced in the vicinity of conducting particles by an external electric-field. Colloid J USSR 54:20–23

    Google Scholar 

  • Gangwal S, Cayre OJ, Bazant MZ, Velev OD (2008) Induced-charge electrophoresis of metallodielectric particles. Phys Rev Lett 100:058302

    Google Scholar 

  • García-Sánchez P, Ramos A, Green NG, Morgan H (2008) Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements. Langmuir 24:9361–9369

    Article  Google Scholar 

  • Ghosal S (2003) The effect of wall interactions in capillary-zone electrophoresis. J Fluid Mech 491:285–300

    Article  MATH  Google Scholar 

  • Ghosal S (2004) Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25:214–228

    Article  Google Scholar 

  • Ghowsi K, Gale RJ (1991) Field effect electroosmosis. J Chromatogr A 559:95–101

    Article  Google Scholar 

  • Gitlin I, Stroock AD, Whitesides GM, Ajdari A (2003) Pumping based on transverse electrokinetic effects. Appl Phys Lett 83:1486–1488

    Article  Google Scholar 

  • González A, Ramos A, Green NG, Castellanos A, Morgan H (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E 61:4019–4028

    Article  Google Scholar 

  • Goswami P, Chakraborty S (2009) Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir 26:581–590

    Article  Google Scholar 

  • Green NG, Ramos A, González A, Morgan H, Castellanos A (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61:4011–4018

    Article  Google Scholar 

  • Green NG, Ramos A, González A, Morgan H, Castellanos A (2002) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E 66:026305

    Article  Google Scholar 

  • Gregersen MM, Okkels F, Bazant MZ, Bruus H (2009) Topology and shape optimization of induced-charge electro-osmotic micropumps. New J Phys 11:075019

    Article  Google Scholar 

  • Guan W, Fan R, Reed MA (2011) Field-effect reconfigurable nanofluidic ionic diodes. Nat Commun 2:506

    Article  Google Scholar 

  • Halpern D, Wei HH (2007) Electroosmotic flow in a microcavity with nonuniform surface charges. Langmuir 23:9505–9512

    Article  Google Scholar 

  • Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8:565–572

    Google Scholar 

  • Heldal T, Volden T, Auerswald J, Knapp H (2007) Embeddable low-voltage micropump using electroosmosis of the second kind. In: 2007 NSTI Nanotechnology Conference and Trade Show. NSTI Nanotech 2007, Technical Proceedings, vol 3, Santa Clara, California, USA, pp 268–271

  • Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72:1053–1057

    Article  Google Scholar 

  • Højgaard Olesen L, Bazant MZ, Bruus H (2010) Strongly nonlinear dynamics of electrolytes in large ac voltages. Phys Rev E 82:011501

    Article  Google Scholar 

  • Huang DM, Cottin-Bizonne C, Ybert C, Bocquet L (2008) Massive amplification of surface-induced transport at superhydrophobic surfaces. Phys Rev Lett 101:064503

    Article  Google Scholar 

  • Huang SH, Hsueh HJ, Hung KY (2010) Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels. Microfluid Nanofluid 8:187–195

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  • Joly L, Ybert C, Trizac E, Bocquet L (2004) Hydrodynamics within the electric double layer on slipping surfaces. Phys Rev Lett 93:257805

    Article  Google Scholar 

  • Joseph P, Cottin-Bizonne C, Benoît JM, Ybert C, Journet C, Tabeling P, Bocquet L (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97:156104

    Article  Google Scholar 

  • Joshi P, Smolyanitsky A, Petrossian L, Goryll M, Saraniti M, Thornton TJ (2010) Field effect modulation of ionic conductance of cylindrical silicon-on-insulator nanopore array. J Appl Phys 107:054701

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551

    Article  Google Scholar 

  • Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Article  Google Scholar 

  • Kilic MS, Bazant MZ (2011) Induced-charge electrophoresis near a wall. Electrophoresis 32:614–628

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75:021502

    Article  Google Scholar 

  • King BV, Freund F (1984) Surface charges and subsurface space-charge distribution in magnesium oxides containing dissolved traces of water. Phys Rev B 29:5814–5824

    Article  Google Scholar 

  • Kivanc FC, Litster S (2011) Pumping with electroosmosis of the second kind in mesoporous skeletons. Sens Actuators, B 151:394–401

    Article  Google Scholar 

  • Kline TR, Paxton WF, Wang Y, Velegol D, Mallouk TE, Sen A (2005) Catalytic micropumps: microscopic convective fluid flow and pattern formation. J Am Chem Soc 127:17150–17151

    Article  Google Scholar 

  • Kumar A, Qiu Z, Khusid B, Yeksel M, Acrivos A (2005) Strong DC and low-frequency AC fields for the manipulation of particles and fluids in microfluidics. 2005 NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2005 Technical Proceedings, Anaheim, California, USA, pp 191–193

  • Lasne D, Maali A, Amarouchene Y, Cognet L, Lounis B, Kellay H (2008) Velocity profiles of water flowing past solid glass surfaces using fluorescent nanoparticles and molecules as velocity probes. Phys Rev Lett 100:214502

    Article  Google Scholar 

  • Lavrentovich OD, Lazo I, Pishnyak OP (2010) Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature 467:947–950

    Article  Google Scholar 

  • Lee CS, Blanchard WC, Wu CT (1990) Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field. Anal Chem 62:1550–1552

    Article  Google Scholar 

  • Lee D-H, Farouk B, Noh H (2011) 3-D simulations of electroosmotic sample migration in microchannels: effects of surface and solution property variations. Sep Sci Technol 46:1377–1387

    Article  Google Scholar 

  • Leinweber FC, Tallarek U (2004) Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir 20:11637–11648

    Article  Google Scholar 

  • Leinweber FC, Eijkel JCT, Bomer JG, Van Den Berg A (2006) Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays. Anal Chem 78:1425–1434

    Article  Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Levitan JA, Devasenathipathy S, Studer V, Ben Y, Thorsen T, Squires TM, Bazant MZ (2005) Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Colloids Surf A 267:122–132

    Article  Google Scholar 

  • Loget G, Kuhn A (2010) Propulsion of microobjects by dynamic bipolar self-regeneration. J Am Chem Soc 132:15918–15919

    Article  Google Scholar 

  • Loget G, Kuhn A (2011) Electric field-induced chemical locomotion of conducting objects. Nat Commun 2:535

    Article  Google Scholar 

  • Long D, Ajdari A (1998) Symmetry properties of the electrophoretic motion of patterned colloidal particles. Phys Rev Lett 81:1529–1532

    Article  Google Scholar 

  • Long D, Stone HA, Ajdari A (1999) Electroosmotic flows created by surface defects in capillary electrophoresis. J Colloid Interface Sci 212:338–349

    Article  Google Scholar 

  • Lyklema J (1995) Fundamentals of interface and colloid science, vol 2. Academic Press, London

    Google Scholar 

  • Macrae MX, Blake S, Mayer M, Yang J (2010) Nanoscale ionic diodes with tunable and switchable rectifying behavior. J Am Chem Soc 132:1766–1767

    Article  Google Scholar 

  • Mao P, Han J (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  Google Scholar 

  • Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, Hoboken

    Book  Google Scholar 

  • Miloh T (2008) A unified theory of dipolophoresis for nanoparticles. Phys Fluids 20:107105

    Article  Google Scholar 

  • Mishchuk N, Gonzalez C, Takhistov P (2001) Electroosmosis of the second kind and current through curved interface. Colloids Surf A 181:131–144

    Article  Google Scholar 

  • Mishchuk NA, Heldal T, Volden T, Auerswald J, Knapp H (2009) Micropump based on electroosmosis of the second kind. Electrophoresis 30:3499–3506

    Article  Google Scholar 

  • Mittal M, Lele PP, Kaler EW, Furst EM (2008) Polarization and interactions of colloidal particles in ac electric fields. J Chem Phys 129:064513

    Article  Google Scholar 

  • Moorthy J, Khoury C, Moore JS, Beebe DJ (2001) Active control of electroosmotic flow in microchannels using light. Sens Actuators, B 75:223–229

    Article  Google Scholar 

  • Moran JL, Posner JD (2011) Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J Fluid Mech 680:31–66

    Article  MathSciNet  MATH  Google Scholar 

  • Morin FO, Gillot F, Fujita H (2007) Modeling the mechanisms driving ac electro-osmotic flow on planar microelectrodes. Appl Phys Lett 91:064103

    Article  Google Scholar 

  • Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sens Actuators, B 92:262–268

    Article  Google Scholar 

  • Muller VM, Sergeeva IP, Sobolev VD, Churaev NV (1986) Boundary effects in the theory of electrokinetic phenomena. Colloid J USSR 48:606–614

    Google Scholar 

  • Murtsovkin VA (1996) Nonlinear flows near polarized disperse particles. Colloid J Russ Acad Sci 58:341–349

    Google Scholar 

  • Nadal F, Argoul F, Hanusse P, Pouligny B, Ajdari A (2002a) Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys Rev E 65:061409

    Article  Google Scholar 

  • Nadal F, Argoul F, Kestener P, Pouligny B, Ybert C, Ajdari A (2002b) Electrically induced flows in the vicinity of a dielectric stripe on a conducting plane. Eur Phys J E 9:387–399

    Article  Google Scholar 

  • Navier CLMH (1823) Mémoire sur les lois du mouvement des fluides. Mém Acad Roy Sci Inst France 6:389–440

    Google Scholar 

  • Ng WY, Goh S, Lam YC, Yang C, Rodriguez I (2009) DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9:802–809

    Article  Google Scholar 

  • Olga IV (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60

    Article  Google Scholar 

  • Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  Google Scholar 

  • Park HM, Kim TW (2009) Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Lab Chip 9:291–296

    Article  Google Scholar 

  • Park S, Chung T, Kim H (2009) Ion bridges in microfluidic systems. Microfluid Nanofluid 6:315–331

    Article  Google Scholar 

  • Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A (2006) Catalytically induced electrokinetics for motors and micropumps. J Am Chem Soc 128:14881–14888

    Article  Google Scholar 

  • Perry JM, Zhou K, Harms ZD, Jacobson SC (2010) Ion transport in nanofluidic funnels. ACS Nano 4:3897–3902

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics: an introduction. Wiley, New York

    Book  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: A review of forces in microelectrode structures. J Phys D 31:2338–2353

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci 217:420–422

    Article  Google Scholar 

  • Ramos A, González A, Castellanos A, Green NG, Morgan H (2003) Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 67:056302

    Article  Google Scholar 

  • Rathore AS, Horvath C (1997) Capillary electrochromatography: theories on electroosmotic flow in porous media. J Chromatogr A 781:185–195

    Article  Google Scholar 

  • Ren Y, Stein D (2008) Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19:195707

    Article  Google Scholar 

  • Ristenpart WD, Aksay IA, Saville DA (2003) Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys Rev Lett 90:128303

    Article  Google Scholar 

  • Ristenpart WD, Aksay IA, Saville DA (2007) Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. J Fluid Mech 575:83–109

    Article  MathSciNet  MATH  Google Scholar 

  • Rose KA, Meier JA, Dougherty GM, Santiago JG (2007) Rotational electrophoresis of striped metallic microrods. Phys Rev E 75:011503

    Article  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Saintillan D, Darve E, Shaqfeh ESG (2006) Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. J Fluid Mech 563:223–259

    Article  MathSciNet  MATH  Google Scholar 

  • Sasaki N, Kitamori T, Kim HB (2006) AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6:550–554

    Article  Google Scholar 

  • Schasfoort RBM, Schlautmann S, Hendrikse J, Van Den Berg A (1999) Field-effect row control for microfabricated fluidic networks. Science 286:942–945

    Article  Google Scholar 

  • Sharp K, Yazdi S, Davison S (2011) Localized flow control in microchannels using induced-charge electroosmosis near conductive obstacles. Microfluid Nanofluid 10:1257–1267

    Article  Google Scholar 

  • Shiu J-Y, Kuo C-W, Chen P, Mou C-Y (2004) Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem Mater 16:561–564

    Article  Google Scholar 

  • Simonov IN, Dukhin SS (1973) Theory of electrophoresis of solid conducting particles in case of ideal polarization of a thin diffuse double-layer. Colloid J USSR 35:173–176

    Google Scholar 

  • Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  Google Scholar 

  • Sniadecki NJ, Lee CS, Sivanesan P, DeVoe DL (2004) Induced pressure pumping in polymer microchannels via field-effect flow control. Anal Chem 76:1942–1947

    Article  Google Scholar 

  • Soni G, Squires TM, Meinhart CD (2007) Nonlinear phenomena in induced charge electroosmosis. In: Proceedings of IMECE2007, ASME international mechanical engineering congress and exposition, Seattle, Washington, USA

  • Sparreboom W (2009) AC electroosmosis in nanochannels. PhD thesis, University of Twente, Enschede

  • Squires TM (2008) Electrokinetic flows over inhomogeneously slipping surfaces. Phys Fluids 20:092105

    Article  Google Scholar 

  • Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252

    Article  MathSciNet  MATH  Google Scholar 

  • Squires TM, Bazant MZ (2006) Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J Fluid Mech 560:65–101

    Article  MathSciNet  MATH  Google Scholar 

  • Storey BD, Edwards LR, Kilic MS, Bazant MZ (2008) Steric effects on ac electro-osmosis in dilute electrolytes. Phys Rev E 77:036317

    Article  Google Scholar 

  • Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84:3314–3317

    Article  Google Scholar 

  • Takhistov P, Duginova K, Chang HC (2003) Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions. J Colloid Interface Sci 263:133–143

    Article  Google Scholar 

  • Talapatra S, Chakraborty S (2008) Double layer overlap in ac electroosmosis. Eur J Mech B 27:297–308

    Article  MATH  Google Scholar 

  • Teubner M (1982) The motion of charged colloidal particles in electric fields. J Chem Phys 76:5564–5573

    Article  Google Scholar 

  • Thamida SK, Chang HC (2002) Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys Fluids 14:4315–4328

    Article  Google Scholar 

  • Trau M, Saville DA, Aksay IA (1996) Field-induced layering of colloidal crystals. Science 272:706–709

    Article  Google Scholar 

  • Trau M, Saville DA, Aksay IA (1997) Assembly of colloidal crystals at electrode interfaces. Langmuir 13:6375–6381

    Article  Google Scholar 

  • Tsai P, Peters AM, Pirat C, Wessling M, Lammertink RGH, Lohse D (2009) Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys Fluids 21:112002

    Article  Google Scholar 

  • Uppalapati M, Huang YM, Jackson TN, Hancock WO (2008) Microtubule alignment and manipulation using AC electrokinetics. Small 4:1371–1381

    Article  Google Scholar 

  • Van Der Wouden EJ, Hermes DC, Gardeniers JGE, Van Den Berg A (2006) Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. Lab Chip 6:1300–1305

    Article  Google Scholar 

  • Vermesh U, Choi JW, Vermesh O, Fan R, Nagarah J, Heath JR (2009) Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett 9:1315–1319

    Article  Google Scholar 

  • Vinogradova OI, Koynov K, Best A, Feuillebois F (2009) Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys Rev Lett 102:118302

    Article  Google Scholar 

  • Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556

    Article  Google Scholar 

  • Vlassiouk I, Smirnov S, Siwy Z (2008) Nanofluidic ionic diodes: comparison of analytical and numerical solutions. ACS Nano 2:1589–1602

    Article  Google Scholar 

  • Wang S, Feng L, Jiang L (2006) One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv Mater 18:767–770

    Article  Google Scholar 

  • Wu Z, Li D (2008) Micromixing using induced-charge electrokinetic flow. Electrochim Acta 53:5827–5835

    Article  Google Scholar 

  • Wu J, Ben Y, Battigelli D, Chang HC (2005) Long-range AC electroosmotic trapping and detection of bioparticles. Ind Eng Chem Res 44:2815–2822

    Article  Google Scholar 

  • Wu Z, Gao Y, Li D (2009) Electrophoretic motion of ideally polarizable particles in a microchannel. Electrophoresis 30:773–781

    Article  Google Scholar 

  • Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9:3820–3825

    Article  Google Scholar 

  • Yang J, Kwok DY (2003) Effect of liquid slip in electrokinetic parallel-plate microchannel flow. J Colloid Interface Sci 260:225–233

    Article  Google Scholar 

  • Yariv E (2005) Induced-charge electrophoresis of nonspherical particles. Phys Fluids 17:1–4

    Google Scholar 

  • Yeh SR, Seul M, Shraiman BI (1997) Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 386:57–59

    Article  Google Scholar 

  • Yossifon G, Frankel I, Miloh T (2006) On electro-osmotic flows through microchannel junctions. Phys Fluids 18:117108

    Article  Google Scholar 

  • Yossifon G, Frankel I, Miloh T (2007) Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids. Phys Fluids 19:068105

    Article  Google Scholar 

  • Yossifon G, Frankel I, Miloh T (2009) Macro-scale description of transient electro-kinetic phenomena over polarizable dielectric solids. J Fluid Mech 620:241–262

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang P, Qiu HH (2008) Investigation of the patterned surface modification on 3D vortex flow generation in a micropipe. J Micromech Microeng 18:115030

    Article  Google Scholar 

  • Zhang G, Wang D, Gu Z–Z, Möhwald H (2005) Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir 21:9143–9148

    Article  Google Scholar 

  • Zhao H (2010) Electro-osmotic flow over a charged superhydrophobic surface. Phys Rev E 81:066314

    Article  Google Scholar 

  • Zhao C (2012) Induced-charge nonlinear electrokinetic phenomena and applications in micro/nano fluidics. PhD thesis, Nanyang Technological University

  • Zhao H, Bau HH (2007) Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis. Phys Rev E 75:066217

    Article  Google Scholar 

  • Zhao C, Yang C (2009) Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks. Phys Rev E 80:046312

    Article  Google Scholar 

  • Zhao C, Yang C (2011a) AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications. Phys Rev E 83:066304

    Article  Google Scholar 

  • Zhao C, Yang C (2011b) AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32:629–637

    Article  Google Scholar 

  • Zhao C, Yang C (2011c) On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows. Colloids Surf A 386:191–194

    Article  Google Scholar 

  • Zhao C, Yang C (2012) Electroosmotic flows in a microchannel with patterned hydrodynamic slip walls. Electrophoresis (To appear)

  • Zhu Y, Granick S (2001) Rate-dependent slip of newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105

    Article  Google Scholar 

  • Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the research grant (MOE2009-T2-2-102) from the Ministry of Education of Singapore to CY and the Ph.D. scholarship from Nanyang Technological University to CLZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Yang, C. Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13, 179–203 (2012). https://doi.org/10.1007/s10404-012-0971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0971-1

Keywords

Navigation