Skip to main content

Advertisement

Log in

Flow of CO2–ethanol and of CO2–methanol in a non-adiabatic microfluidic T-junction at high pressures

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the mixtures was 0.95 and 0.87, respectively. Under these operating conditions, CO2 was either in liquid, gas or supercritical state; and the mixtures experienced a miscible single phase or a vapour–liquid equilibrium (VLE), with two separated phases. Taylor, annular and wavy were the two-phase flow regimes obtained in the VLE region. In the single phase region, the observed flows were classified into standard single-phase flows, “pseudo” two-phase flows and local phenomena in the T-junction. Flow regime maps were generated, based on temperature and pressure conditions. Two-phase flow void fractions and several parameters of Taylor flow were analysed. They showed a clear dependency on temperature, but were mostly insensitive to pressure. A continuous accumulation of liquid, either in the CO2 channel or at the CO2-side wall after the T-junction, disturbed most of the experiments in VLE conditions by randomly generating liquid plugs. This phenomenon is analysed, and capillary and wetting effects due to local Marangoni stresses are suggested as possible causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C :

Correlation parameter (–)

G d :

Vaporized mass diffusion fraction (–)

N :

Number of liquid plugs (–)

P :

Pressure (MPa)

R :

Pixel resolution of images (pixel m−1)

T :

Temperature (K)

% v/v :

Volumetric fraction (–)

\(\Updelta {\rm px}\) :

Difference in pixel position between two frames (pixel)

d h :

Hydraulic diameter of the channel (m)

f :

Frequency (Hz)

fr:

Camera frame rate (Hz)

t :

Time (s)

u :

Velocity (m s−1)

x :

Mass fraction in liquid phase (–)

x o :

Mass fraction in mixture (–)

y :

Mass fraction in vapour phase (–)

ρ:

Density (kg m−3)

θ:

Elongation rate (–)

ɛ:

Void fraction (–)

bn:

Bubble nose

bub:

Bubble point

bt:

Bubble tail

dew:

Dew point

exp:

Experimental

hom:

Homogeneous

l:

Liquid phase

lp:

Liquid plug

o:

Syringe pump conditions

rel:

Relative

v:

Vapour phase

xio:

Xiong and Chung (2007)

CO2 :

Carbon dioxide

EtOH:

Ethanol

MeOH:

Methanol

VLE:

Vapour–liquid equilibrium

References

  • Agostini B, Revellin R, Thome JR (2008) Elongated bubbles in microchannels. Part I: Experimental study and modeling of elongated bubble velocity. Int J Multiph Flow 34(6):590–601

    Article  Google Scholar 

  • Akbar MK, Plummer DA, Ghiaasiaan SM (2003) On gas–liquid two-phase flow regimes in microchannels. Int J Multiph Flow 29(5):855–865

    Article  MATH  Google Scholar 

  • Ali MI, Sadatomi M, Kawaji M (1993) Adiabatic two-phase flow in narrow channels between two flat plates. Can J Chem Eng 71(5):657–666

    Article  Google Scholar 

  • Ambrosini W (2007) On the analogies in the dynamic behaviour of heated channels with boiling and supercritical fluids. Nucl Eng Des 237(11):1164–1174

    Article  Google Scholar 

  • Armand AA (1946) The resistance during the movement of a two-phase system in horizontal pipes. Izv Vses Teplotekh Inst 1:16–23 (A.E.R.E. Lib/Trans 828)

    Google Scholar 

  • Bezanehtak K, Combes GB, Dehghani F, Foster NR, Tomasko DL (2002) Vapor–liquid equilibrium for binary systems of carbon dioxide + methanol, hydrogen + methanol, and hydrogen + carbon dioxide at high pressures. J Chem Eng Data 47(2):161–168

    Article  Google Scholar 

  • Brunner E, Hültenschmidt W, Schlichthärle G (1987) Fluid mixtures at high pressures IV. Isothermal phase equilibria in binary mixtures consisting of (methanol + hydrogen or nitrogen or methane or carbon monoxide or carbon dioxide). J Chem Thermodyn 19(3):273–291

    Article  Google Scholar 

  • Chehroudi B (2006) Supercritical fluids: nanotechnology and select emerging applications. Combust Sci Technol 178(1):555–621

    Article  Google Scholar 

  • Cheng L, Ribatski G, Thome JR (2008) Analysis of supercritical CO2 cooling in macro- and micro-channels. Int J Refrig 31(8):1301–1316

    Article  Google Scholar 

  • Chester TL (2004) Determination of pressure-temperature coordinates of liquid–vapor critical loci by supercritical fluid flow injection analysis. J Chromatogr A 1037(1–2):393–403

    Article  Google Scholar 

  • Chung PMY, Kawaji M (2004) The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int JMultiph Flow 30(7–8):735–761

    Article  MATH  Google Scholar 

  • Collier JG, Thome JR (1996) Convective Boiling and Condensation, 3rd edn. Oxford University Press, USA

    Google Scholar 

  • Dang C, Iino K, Hihara E (2008) Study on two-phase flow pattern of supercritical carbon dioxide with entrained PAG-type lubricating oil in a gas cooler. Int J Refrig 31(7):1265–1272

    Article  Google Scholar 

  • Dreyfus R, Tabeling P, Willaime H (2003) Ordered and disordered patterns in two-phase flows in microchannels. Phys Rev Lett 90(14):144505

    Article  Google Scholar 

  • Galicia-Luna LA, Ortega-Rodriguez A, Richon D (2000) New apparatus for the fast determination of high-pressure vapor–liquid equilibria of mixtures and of accurate critical pressures. J Chem Eng Data 45(2):265–271

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446

    Article  Google Scholar 

  • Guido S, Preziosi V (2010) Droplet deformation under confined Poiseuille flow. Adv Colloid Interface Sci 161(1–2):89–101

    Article  Google Scholar 

  • Guillot P, Colin A (2005) Stability of parallel flows in a microchannel after a T junction. Phys Rev E Stat Nonlinear Soft Matter Phys 72(6):066301

    Article  Google Scholar 

  • Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503

    Article  Google Scholar 

  • Gupta A, Kumar R (2009) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8(6):799–812

    Article  Google Scholar 

  • Hessel V, Angeli P, Gavriilidis A, Löwe H (2005) Gas–liquid and gas–liquid–solid microstructured reactors: Contacting principles and applications. Ind Eng Chem Res 44(25):9750–9769

    Article  Google Scholar 

  • Hwang JJ, Tseng FG, Pan C (2005) Ethanol–CO2 two-phase flow in diverging and converging microchannels. Int J Multiph Flow 31(5):548–570

    Article  MATH  Google Scholar 

  • Jennings DW, Lee RJ, Teja AS (1991) Vapor–liquid equilibria in the carbon dioxide + ethanol and carbon dioxide + 1-butanol systems. J Chem Eng Data 36(3):303–307

    Article  Google Scholar 

  • Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, Lee CS, Huh WS (2001) Measurements and correlation of high-pressure VLE of binary CO2–alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol). Fluid Phase Equilibria 185(1–2):219–230

    Article  Google Scholar 

  • Kandlikar SG (2002) Fundamental issues related to flow boiling in minichannels and microchannels. Exp Thermal Fluid Sci 26(2–4):389–407

    Article  Google Scholar 

  • Kawahara A, Chung PMY, Kawaji M (2002) Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiph Flow 28(9):1411–1435

    Article  MATH  Google Scholar 

  • Kumar G, Prabhu KN (2007) Review of non-reactive and reactive wetting of liquids on surfaces. Adv Colloid Interface Sci 133(2):61–89

    Article  Google Scholar 

  • Lee CY, Lee SY (2008) Influence of surface wettability on transition of two-phase flow pattern in round mini-channels. Int J Multiph Flow 34(7):706–711

    Article  Google Scholar 

  • Lee LY, Lim LK, Hua J, Wang CH (2008) Jet breakup and droplet formation in near-critical regime of carbon dioxide-dichloromethane system. Chem Eng Sci 63(13):3366–3378

    Article  Google Scholar 

  • Leu AD, Chung SYK, Robinson DB (1991) The equilibrium phase properties of (carbon dioxide + methanol). J Chem Thermodyn 23(10):979–985

    Article  Google Scholar 

  • Liu H, Zhang Y (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106(3):034906

    Article  Google Scholar 

  • de Loos SRA, van der Schaaf J, Tiggelaar RM, Nijhuis TA, de Croon MHJM, Schouten JC (2010) Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels. Microfluidics and Nanofluidics 9(1):131–144

    Article  Google Scholar 

  • Marre S, Aymonier C, Subra P, Mignard E (2009) Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows. Appl Phys Lett 95(13):134105

    Article  Google Scholar 

  • Mendoza de la Cruz JL, Galicia-Luna LA (1999) High-pressure vapor–liquid equilibria for the carbon dioxide + ethanol and carbon dioxide + propan-1-ol systems at temperatures from 322.36 K to 391.96 K. ELDATA Int Electr J Physico-Chem Data 5:157–164

    Google Scholar 

  • de Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    MATH  Google Scholar 

  • Ody CP, Baroud CN, de Langre E (2007) Transport of wetting liquid plugs in bifurcating microfluidic channels. J Colloid Interface Sci 308(1):231–238

    Article  Google Scholar 

  • Ohgaki K, Katayama T (1976) Isothermal vapor–liquid equilibrium data for binary systems containing carbon dioxide at high pressures: methanol-carbon dioxide, n-hexane-carbon dioxide, and benzene-carbon dioxide systems. J Chem Eng Data 21(1):53–55

    Article  Google Scholar 

  • Rasband WS (1997–2011) ImageJ, Version 1.43l. http://rsb.info.nih.gov/ij/

  • Revellin R (2005) Experimental two-phase fluid flow in microchannels. PhD thesis, EPFL, Lausanne, Switzerland

  • Revellin R, Dupont V, Ursenbacher T, Thome JR, Zun I (2006) Characterization of diabatic two-phase flows in microchannels: flow parameter results for R-134a in a 0.5 mm channel. Int J Multiph Flow 32(7):755–774

    Article  MATH  Google Scholar 

  • Revellin R, Agostini B, Thome JR (2008) Elongated bubbles in microchannels. Part II: Experimental study and modeling of bubble collisions. Int J Multiph Flow 34(6):602–613

    Article  Google Scholar 

  • Secuianu C, Feroiu V, Geană D (2008) Phase behavior for carbon dioxide + ethanol system: Experimental measurements and modeling with a cubic equation of state. J Supercrit Fluids 47(2):109–116

    Article  Google Scholar 

  • Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in microchannels. Exp Thermal Fluid Sci 26(6–7):703–714

    Article  Google Scholar 

  • Shao N, Gavriilidis A, Angeli P (2009) Flow regimes for adiabatic gas–liquid flow in microchannels. Chem Eng Sci 64(11):2749–2761

    Article  Google Scholar 

  • Shui L, Eijkel JCT, van den Berg A (2007a) Multiphase flow in micro- and nanochannels. Sens Actuators B Chem 121(1):263–276

    Article  Google Scholar 

  • Shui L, Eijkel JCT, van den Berg A (2007b) Multiphase flow in microfluidic systems—Control and applications of droplets and interfaces. Adv Colloid Interface Sci 133(1):35–49

    Article  Google Scholar 

  • Smith JM, Van Ness HC, Abbott MM (2000) Introduction to chemical engineering thermodynamics, chap 10, 6th edn. McGraw-Hill Education (ISE Editions), New York

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Modern Phys 77(3):977–1026

    Article  Google Scholar 

  • Steegmans MLJ, Schroën CGPH, Boom RM (2009) Generalised insights in droplet formation at T-junctions through statistical analysis. Chem Eng Sci 64(13):3042–3050

    Article  Google Scholar 

  • van Steijn V, Kreutzer MT, Kleijn CR (2007) μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem Eng Sci 62(24):7505–7514

    Article  Google Scholar 

  • Suzuki K, Sue H, Itou M, Smith RL, Inomata H, Arai K, Saito S (1990) Isothermal vapor–liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems. J Chem Eng Data 35(1):63–66

    Article  Google Scholar 

  • Thome JR (2006) State-of-the-art overview of boiling and two-phase flows in microchannels. Heat Transf Eng 27(9):4–19

    Article  Google Scholar 

  • Tian YL, Han M, Chen L, Feng JJ, Qin Y (2001) Study on vapor–liquid phase equilibria for CO2 − C2H5OH system. Acta Physico Chimica Sinica 17(2):155–160 (in Chinese)

    Google Scholar 

  • Tiggelaar RM, Benito-López F, Hermes DC, Rathgen H, Egberink RJM, Mugele FG, Reinhoudt DN, van den Berg A, Verboom W, Gardeniers HJGE (2007) Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chem Eng J 131(1–3):163–170

    Article  Google Scholar 

  • Trachsel F, Tidona B, Desportes S, von Rohr PR (2009) Solid catalyzed hydrogenation in a Si/glass microreactor using supercritical CO2 as the reaction solvent. J Supercrit Fluids 48(2):146–153

    Article  Google Scholar 

  • Weinmueller C, Hotz N, Mueller A, Poulikakos D (2009) On two-phase flow patterns and transition criteria in aqueous methanol and CO2 mixtures in adiabatic, rectangular microchannels. Int J Multiph Flow 35(8):760–772

    Article  Google Scholar 

  • Xiong R, Chung JN (2007) An experimental study of the size effect on adiabatic gas–liquid two-phase flow patterns and void fraction in microchannels. Phys Fluids 19(3):033301

    Article  Google Scholar 

  • Yue J, Luo L, Gonthier Y, Chen G, Yuan Q (2008) An experimental investigation of gas–liquid two-phase flow in single microchannel contactors. Chem Eng Sci 63(16):4189–4202

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor John R. Thome of the EPFL, Lausanne, Switzerland, for the valuable discussions. This study was financially supported by the Spanish Ministry of Science and Technology and FEDER under project DPI2010-17212. R. B. acknowledges the financial support by the Spanish Ministry of Education through the mobility grants programme for PhD students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Blanch-Ojea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (PDF 156 KB)

Supplementary Material 2 (PDF 121 KB)

Supplementary Material 3 (MPG 10,087 KB)

Supplementary Material 4 (MPG 8,370 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanch-Ojea, R., Tiggelaar, R.M., Pallares, J. et al. Flow of CO2–ethanol and of CO2–methanol in a non-adiabatic microfluidic T-junction at high pressures. Microfluid Nanofluid 12, 927–940 (2012). https://doi.org/10.1007/s10404-011-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0927-x

Keywords

Navigation