Skip to main content
Log in

Contact line dynamics of a superhydrophobic surface: application for immersion lithography

  • Brief Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The dynamic contact line behavior of water on nanotextured rough hydrophobic and superhydrophobic surfaces is studied and contrasted to smooth hydrophobic surfaces for application in immersion lithography. Liquid loss occurs at the receding meniscus when the smooth substrate is accelerated beyond a critical velocity of approximately 1 m/s. Nanotexturing the surface with average roughness values even below 10 nm results in critical velocity larger than 2.5 m/s, the upper limit of the apparatus. This unexpected increase in critical velocity is observed for both sticky hydrophobic and slippery superhydrophobic surfaces. The authors attribute this large increase in critical velocity both in increased receding contact angle and in increased slip length for such nanotextured surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Bayiati P, Tserepi A, Gogolides E, Misiakos KJ (2004) Selective plasma-induced deposition of fluorocarbon films on metal surfaces for actuation in microfluidics. J Vac Sci Technol A 11:1546–1551

    Article  Google Scholar 

  • Brandl S, Watso R, Holmes S, Wei Y, Petrillo K, Cummings K, Goodwin F (2006) Investigation of immersion related defects using pre- and post-wet experiments. Proc SPIE 6154:302–310

    Google Scholar 

  • Burnett H, Shedd T, Nellis G, El-Morsi M, Engelstad R, Garoff S, Varanasi K (2005a) Control of the receding meniscus in Immersion Lithography. J Vac Sci Technol B 23:2611–2616

    Article  Google Scholar 

  • Burnett H, Shedd T, Nellis G, Van Peski CJ (2005b) Static and dynamic contact angles of water on photoresist. J Vac Sci Technol B 23:2721–2727

    Article  Google Scholar 

  • Burnett HB, Wei AC, Morsi MS, Shedd TA, Nellis GFJ, Van Peski C, Grenville A (2006) Modeling and experimental investigation of bubble entrapment for flow over topography during immersion lithography. J Microlith Microfab Microsyst 5(1):013008-1–013008-8

    Article  Google Scholar 

  • Checco A, Hofmann T, DiMasi E, Black T, Ocko BM (2010) Morphology of air nanobubbles trapped at hydrophobic nanopatterned surfaces. Nano Lett 10(4):1354–1358

    Article  Google Scholar 

  • Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96:066001-1–066001-4

    Google Scholar 

  • Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194

    Article  MATH  Google Scholar 

  • Eggers J (2004) Toward a description of contact line motion at higher capillary numbers. Phys Fluids 16:3491–3494

    Article  MathSciNet  Google Scholar 

  • Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker C (2005) Effective slip on textured superhydrophobic surfaces. J Phys Fluids 17:51701-1–51701-4

    Article  Google Scholar 

  • Joseph P, Cottin-Bizonne C, Benoit JM, Ybert C, Journet C, Tabeling P, Bocquet L (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97:156104-1–156104-4

    Article  Google Scholar 

  • Mulkens J, Streefkerk B, Jasper H, de Klerk J, de Jong F, Levasier L, Leenders M (2007) Defects, overlay, and focus performance improvements with five generations of immersion exposure systems. Opt Microlithogr XX Proc SPIE 6520:652005-1–652005-11

    Google Scholar 

  • Niwa T, Enomoto M, Shimura S, Kyoda H, Kawasaki T, Kitano J (2005) Optimization of equipment for 193-nm immersion processing. Adv Resist Technol Process XXII Proc SPIE 5753:799–806

    Google Scholar 

  • Petrov PG, Petrov JG (1992) A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8:1762–1767

    Article  Google Scholar 

  • Petrov JG, Sedev RV, Petrov PG (1992) Effect of geometry on steady wetting kinetics and critical velocity of film entrainment. Adv Colloid Interface Sci 38:229–269

    Article  Google Scholar 

  • Podgorski T, Flesselles JM, Limat L (2001) Corners, cusps, and pearls in running drops. Phys Rev Lett 87:036102-1–036102-4

    Article  Google Scholar 

  • Riepen M, Evangelista F, Donders S (2008) Contact line dynamics in immersion lithography-dynamic contact angle analysis. In: Proceedings of the 1st European Conference on Microfluidics—Microfluidics 2008, Bologna, December 10–12

  • Sanders DP (2010) Advances in patterning materials for 193nm immersion lithography. Chem Rev 110(1):321–360

    Article  Google Scholar 

  • Schuetter SD, Shedd TA, Nellis GFJ (2007) Prediction of the velocity at which separates from a moving contact line. J Micro/Nanolithogr MEMS MOEMS 6(2):023003-1–023003-8

    Article  Google Scholar 

  • Shedd TA, Schuetter SD, Nellis GF (2006) Experimental characterization of the receding meniscus under conditions associated with immersion lithography. Opt Microlithogr XIX Proc SPIE 6154:61540R-1–61540R-11

    Google Scholar 

  • Snoeijer JH, Delon G, Fermigier M, Andreotti B (2006) Avoided critical behavior in dynamically forced wetting. Phys Rev Lett 96:174504-1–174504-4

    Google Scholar 

  • Tserepi A, Gogolides E, Misiakos K, Vlachopoulou ME, Vourdas N (2005/2006) Greek Patent application number 20050100473, PCT application number GR2006/000011

  • Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C (2009) Mechanism of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir 25(19):11748–11759

    Article  Google Scholar 

  • Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11:714–721

    Article  Google Scholar 

  • Vourdas N, Tserepi A, Gogolides E (2007) Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology 18:125304-1–125304-7

    Article  Google Scholar 

  • Vourdas N, Vlachopoulou ME, Tserepi A, Gogolides E (2009) Micro and nano structuring and texturing of polymers using plasma processes: potential manufacturing applications. Int J Nanotechnol 6:152–163

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the FP7 Marie Curie Initial Training Network “Surface Physics for Advanced Manufacturing” project ITN 215723 is kindly acknowledged. Author A.K. Gnanappa would like to thank Koen Winkels (University of Twente) for the help with MATLAB code. The authors also wish to thank Nasos Botsialas (NCSR Demokritos, Athens) for providing micro-drilling of PMMA samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Gogolides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanappa, A.K., Gogolides, E., Evangelista, F. et al. Contact line dynamics of a superhydrophobic surface: application for immersion lithography. Microfluid Nanofluid 10, 1351–1357 (2011). https://doi.org/10.1007/s10404-010-0762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0762-5

Keywords

Navigation