Skip to main content
Log in

A dielectrophoresis-based microdevice coated with nanostructured TiO2 for separation of particles and cells

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this study, we present a microdevice coated with titanium dioxide for cells and particles separation and handling. The microsystem consists of a pair of planar interdigitated gold micro-electrode arrays on a quartz substrate able to generate a traveling electric completed with a microfabricated three-dimensional glass structure for cell confinement. Dielectrophoretic forces were exploited for both vertical and lateral cell motions. In order to provide a biocompatible passivation layer to the electrodes a highly biocompatible nanostructured titanium dioxide film was deposited by supersonic cluster beam deposition (SCBD) on the electrode array. The dielectrophoretic effects of the chip were initially tested using polystyrene beads. To test the biocompatibility and capability of dielectrophoretic cell movement of the device, four cell lines (NIH3T3, SH-SY5Y, MDCK, and PC12) were used. Separation of beads from SH-SY5Y cells was also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ansys (2010) Retrieved from www.ansys.com

  • Barborini E, Piseri P, Milani P (1999) A pulsed microplasma source of high intensity supersonic carbon cluster beams. J Phys D 32(21):L105–L109

    Article  Google Scholar 

  • Barborini E, Kholmanov IN, Piseri P, Ducati C, Bottani CE, Milani P (2002) Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition. Appl Phys Lett 81(16):3052–3054

    Article  Google Scholar 

  • Barborini E, Vinati S, Leccardi M, Repetto P, Bertolini G, Rorato O et al (2008) Batch fabrication of metal oxide sensors on micro-hotplates. J Micromech Microeng 18(5):055015

    Article  Google Scholar 

  • Bocchi M, Lombardini M, Faenza A, Rambelli L, Giulianelli L, Pecorari N et al (2009) Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens Bioelectron 24:1177–1183

    Article  Google Scholar 

  • Burgarella S, Merlo S, Dell’Anna B, Zarola G, Bianchessi M (2010) A modular micro-fluidic platform for cells handling by dielectrophoresis. Microelectron Eng 87:2124–2133

    Google Scholar 

  • Carbone R, Marangi I, Zanardi A, Giorgetti L, Chierici E, Berlanda G et al (2006) Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. Biomaterials 27:3221–3229

    Article  Google Scholar 

  • Chen DF, Du H, Li WH (2007) Bioparticle separation and manipulation using dielectrophoresis. Sens Actuators A 133:329–334

    Article  Google Scholar 

  • Friederich P, Dilger JP, Isbrandt D, Sauter K, Pongs O, Urban BW (2003) Biophysical properties of kv3.1 channels in sh-sy5y human neuroblastoma cells. Recept Channels 9(6):387–396

    Google Scholar 

  • Gambari R, Borgatti M, Altomare L, Manaresi N, Medoro G, Romani A et al (2003) Applications to cancer research of “lab-on-a-chip” devices based on dielectrophoresis (dep). Technol Cancer Res Treat 2:31–40

    Google Scholar 

  • Gascoygne PR, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instrument. In: Proc. IEEE 92, pp 22–42

  • Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983

    Article  Google Scholar 

  • Green NG, Ramos A, Morgan H (2000) Ac electrokinetics: a survey of sub-micrometre particle dynamics. J Phys D 33(6):632–641

    Article  Google Scholar 

  • Greene LA, Tischler AS (1982) PC12 pheochromo-cytoma cultures in neurobiological research. Adv Cell Neurobiol 3:374–414

    Google Scholar 

  • Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74(14):3362–3371

    Article  Google Scholar 

  • Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23(16):2569–2582

    Article  Google Scholar 

  • Hughes MP (2003) Nanoelectromechanics in engineering and biology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lee SW, Tai YC (1999) A micro cell lysis device. Sens Actuators A 73(1–2):74–79

    Google Scholar 

  • Llamas M, Giner V, Sancho M (1998) The dynamic evolution of cell chaining in a biological suspension induced by an electrical field. J Phys D 31(21):3160–3167

    Article  Google Scholar 

  • Manaresi N, Romani A, Medoro G, Altomare L, Leonardi A, Tartagni M et al (2003) A cmos chip for individual cell manipulation and detectio. In: ISSCC, IEEE, pp 192–195

  • MATHCAD (2007) Retrieved from http://www.ptc.com/products/mathcad/

  • Morgan H, Green N (2003) Electrokinetics: colloids and nanoparticles. Research Studies Press, Baldock, UK

    Google Scholar 

  • Nagrath S, Sequist SL et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–U10

    Google Scholar 

  • Oblak J, Krizaj D, Amon S, Macek-Lebar A, Miklavcic D (2007) Feasibility study for cell electroporation detection and separation by means of dielectrophoresis. Bioelectrochemistry 71(2):164–171

    Article  Google Scholar 

  • Park HA, Suk K, Bashir R (2009) Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip 9:2224–2229

    Article  Google Scholar 

  • Powers JF, Evinger MJ, Tsokas P, Bedri S, Alroy J, Shahsavari M et al (2000) Heochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. J Micromech Microeng 302(3):309

    Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Wegner K, Piseri P, Tafreshi HV, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D 39(22):R439

    Article  Google Scholar 

  • Yantzi JD, Yeow JT, Abdallah SS (2006) Multiphase electrodes for microbead control applications: integration of dep and electrokinetics for bio-particle positioning. Biosens Bioelectron 22(11):2539

    Article  Google Scholar 

  • Yu Z, Xiang GX, Pan LB, Huang LH, Yu ZY, Xing WL et al (2004) Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell position ing bioelectronic chips. Biomed Microdevices 6(4):311–324

    Article  Google Scholar 

  • Zou H, Mellon S, Syms RR, Tanner KE (2006) 2-Dimensional mems dielectrophoresis device for osteoblast cell stimulation. Biomed Microdevices 8(4):353–359

    Article  Google Scholar 

  • Zou Z, Lee S, Ahn CH (2008) A polymer microfluidic chip with interdigitated electrodes arrays for simultaneous dielectrophoretic manipulation and impedimetric detection of microparticles. IEEE Sens J 8(5):527–535

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by AIRC under OGCG grant: “Development and integration of high-throughput technologies for the functional genomics of cancer” and CARITRO Foundation under the project: CELTIC—“Development of an integrated system based on innovative nano-microfabrication technologies for in vitro-diagnostic assays”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Morganti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morganti, E., Collini, C., Cunaccia, R. et al. A dielectrophoresis-based microdevice coated with nanostructured TiO2 for separation of particles and cells. Microfluid Nanofluid 10, 1211–1221 (2011). https://doi.org/10.1007/s10404-010-0751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0751-8

Keywords

Navigation