Skip to main content
Log in

High Knudsen number fluid flow at near-standard temperature and pressure conditions using precision nanochannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Gas flows over a wide range of Knudsen numbers (~0.5–10) are studied using silicon nanochannel arrays with slit-shaped pores. The pore sizes of the silicon nanochannel arrays range from micrometer to sub-10-nm scales. The flows are generated under conditions of room temperature and near-atmospheric pressure (~22°C and ~101–115 kPa) and span the continuum flow, continuum-slip flow, transition flow and free-molecular flow regimes. The measured flow rates of helium, argon and carbon dioxide are in good agreement with a theoretical model (Unified Slip Model) proposed by Beskok and Karniadakis (Nanoscale Microscale Thermophys Eng 3:43–77, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

STP:

Standard temperature and pressure

USM:

Unified slip model

References

  • Agrawal A, Agrawal A (2006) Three-dimensional simulation of gaseous slip flow in different aspect ratio microducts. Physics of Fluids 18(103604):1–11

    Google Scholar 

  • Arkilic E, Schmidt MA, Breuer KS (1997) Gaseous slip flow in long microchannels. J MEMS 6:167–178

    Google Scholar 

  • Arkilic E, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  MATH  Google Scholar 

  • Berman AS (1965) Free molecule transmission probabilities. J Appl Phys 36:3356

    Article  Google Scholar 

  • Berman AS (1966) Erratum: free molecule transmission probabilities. J Appl Phys 37

  • Beskok A, Karniadakis GE (1999) Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Nanoscale Microscale Thermophys Eng 3(1):43–77

    Article  Google Scholar 

  • Bird GA (1978) Monte Carlo simulation of gas flows. Annual Rev Fluid Mech 10(1):11–31

    Article  MathSciNet  Google Scholar 

  • Bird GA (2003) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  • Bird RB, Lightfoot EN, Steward WE (2002) Transport phenomena. Wiley, New York

    Google Scholar 

  • Bonhomme F, Welk ME, Nenoff TM (2003) CO2 selectivity and lifetimes of high silica ZSM-5. Microporous Mesoporous Mater 66:181–188

    Article  Google Scholar 

  • Carman PC (1956) The flow of gases through porous media. Academic Press, New York

    Google Scholar 

  • Cercignani C (1988) The Boltzmann equation and its applications. Springer, New York

    MATH  Google Scholar 

  • Chapman CL, Bhattacharyya D, Eberhart RC, Timmons RB, Chuong CJ (2008) Plasma polymer thin film depositions to regulate gas permeability through nanoporous track etched membranes. J Membr Sci 318:137–144

    Article  Google Scholar 

  • Chu WH, Chin R, Huen T, Ferrari M (1999) Silicon membrane nanofilters from sacrificial oxide removal. J Microelectromech Syst 8(1):34–42

    Article  Google Scholar 

  • Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 57(1):118–120

    Article  Google Scholar 

  • Didier RFG (1994) Aerodynamics of shuttle orbiter at high altitudes. J Spacecr Rocket 31:944–952

    Article  Google Scholar 

  • Dongari N, Agrawal A, Agrawal A (2007) Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf 50:3411–3421

    Article  MATH  Google Scholar 

  • Ewart T, Perrier P, Graur IA, Meolans JG (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

    Article  MATH  Google Scholar 

  • Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S (2006) Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. ASAIO J 52:221–227.

    Article  Google Scholar 

  • Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Membr Sci 326:58–63

    Article  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the freeman scholar lecture. J Fluid Eng 121:5–33

    Article  Google Scholar 

  • Grattoni A, De Rossa E, Ferrati S, Wang Z, Gianesini A, Liu X, Hussain F, Goodall R (2009) Analysis of a nanochanneled membrane structure through convective gas flow. J Micromech Microeng 19:1–11

    Article  Google Scholar 

  • Gruener S, Huber P (2008) Knudsen diffusion in silicon nanochannels. Phys Rev Lett 100(6):64502

    Article  Google Scholar 

  • Hadjiconstantinou NG (2003) Comment on Cercignani’s second-order slip coefficient. Phys Fluids 15:2352–2354

    Article  MathSciNet  Google Scholar 

  • Harley JC, Huang Y, Bau H, Zemel JN (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274

    Article  Google Scholar 

  • Hwang ST, Kammermeyer K, Weissberger A (1975) Membranes in separations. Wiley-Interscience, New York

    Google Scholar 

  • Jousten K (2008) Handbook of vacuum technology. Vch Verlagsgesellschaft Mbh

  • Kalweit M, Drikakis D (2009) Coupling strategies for hybrid molecular-continuum simulation methods. J Mech Eng Sci 222:797–806

    Google Scholar 

  • Kanani DM, Fissell WH, Roy S, Dubnisheva A, Fleischman A, Zydney AL (2009) Permeability—selectivity analysis for ultrafiltration: effect of pore geometry. J Memb Sci 349:405–410

    Article  Google Scholar 

  • Karniadakis GE, Beskok A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kaye GWC, Laby TH (1995) Tables of physical and chemical constants, 16th edn. Longman, London

    Google Scholar 

  • Kleijn CR, Dorsman R, Kuijlaars KJ, Okkerse M, van Santen H (2007) Multi-scale modeling of chemical vapor deposition processes for thin film technology. J Cryst Growth 303:362–380

    Article  Google Scholar 

  • Magistrelli JM (2004) Investigation of fluid flow through silicon nanoporous membranes. MS Thesis, Case Western Reserve University

  • Maxwell JC (1890) On the condition to be satisfied by a gas at the surface of a solid body. In: Niven WD (ed) The scientific papers of James Clerk Maxwell, vol 2. Cambridge University Press, London, p 704

    Google Scholar 

  • Pabby AK, Rizvi SSH, Sastre AM (2008) Handbook of membrane separations: chemical, pharmaceutical FOOD and biotechnological applications. CRC press, New York

    Book  Google Scholar 

  • Pong K, Ho C, Liu J, Tai Y (1994) Non-linear pressure distribution in uniform microchannels. In: Appl. Microfabrication to Fluid Mechanics, ASME Winter Annu. Meet. Chicago, IL, Nov. 1994, pp 51–56

  • Robertson JK, Wise KD (2001) Modeling a microfluidic system using Knudsen’s empirical equation for flow in a transition regime. J Vacuum Sci Technol A 19:358–364

    Article  Google Scholar 

  • Roy S, Raju R, Chuang HF, Cruden BA, Meyyappan M (2003) Modeling gas flow through microchannels and nanopores. J Appl Phys 93:48704879

    Google Scholar 

  • Sali JV, Patil SB, Jadkar SR, Takwale MG (2001) Hot-wire CVD growth simulation of thickness uniformity. Thin Solid Films 395:66–70

    Article  Google Scholar 

  • Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27:657

    Article  Google Scholar 

  • Steckelmacher W (1978) The effect of cross-sectional shape on the molecular flow in long tubes. Vacuum 28:269–275

    Article  Google Scholar 

  • Unnikrishnan S, Jansen HV, Falke FH, Tas NR, Van Wolferen H, De Boer MJ, Sanders RGP, Elwenspoek MC (2009) Transition flow through an ultra-thin nanosieve. Nanotechnology 20:305304

    Article  Google Scholar 

  • Verma B, Demsis A, Agrawal A, Prabhu SV (2009) Semi empirical correlation for friction factor with gas flow through smooth microtube. J Vacuum Sci Technol A 27(3):584–590

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following people for their assistance: Anna Dubnisheva and Illya Gordon at the Cleveland Clinic for fabrication and testing supplies, respectively; and David Jacqmin of NASA Glenn Research Center for discussions on experimental setup. This project was partially supported by grants from the NASA John Glenn Biomedical Engineering Consortium and a NIH Grant R01EB008049 administered by the NIBIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Conlisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fissell, W.H., Conlisk, A.T., Datta, S. et al. High Knudsen number fluid flow at near-standard temperature and pressure conditions using precision nanochannels. Microfluid Nanofluid 10, 425–433 (2011). https://doi.org/10.1007/s10404-010-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0682-4

Keywords

Navigation