Skip to main content
Log in

Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Recent studies of nanofluids have shown that the nanoparticles when mixed in fluid medium such as water and ethylene glycol enhance the thermal conductivity of the colloids when compared to the fluid medium. However, numerous experimental studies conducted on the effective thermal conductivity of nanofluids, while using initial particle distribution consisting of range of diameters, have reported their results at volume-weighted average diameters. Here, we use computer simulations to investigate the effect of initial particle distribution or the effect of polydispersivity on the effective thermal conductivity of nanofluids. The study reveals that the simulations performed with multi-sized nanoparticles predict the effective thermal conductivity values of nanofluids closer to the experimental values than the corresponding volume weighted average diameters. Inhomogeneous coagulations in the multi-sized nanofluids were found to be a major factor for the deviation of effective thermal conductivity of the nanofluids in single- and multi-sized nanofluids. Our results suggest that initial distribution of particles has a significant role in predicting the effective thermal conductivity of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Hamaker constant

C c :

Cunningham correction factor

C s :

Thermal slip coefficient

c p :

Specific heat of particle

d p :

Diameter of particle

F B :

Brownian force

F D :

Hydrodynamic drag force

F p :

Force exerted by particles on fluid

F T :

Thermophoretic force

F V :

Van der Waals force

G i :

Gaussian random distribution

h :

Distance between two particles

Kn :

Knudsen number

k B :

Boltzmann constant

k f :

Thermal conductivity of fluid

k nf :

Effective thermal conductivity of nanofluid

k r :

Thermal conductivity ratio of particle to fluid

k T :

Turbulent thermal conductivity

m p :

Mass of particle

Nu :

Nusselt number

N p :

Number of particles

Pr :

Prandtl number

p :

Pressure of fluid

q 2w :

Temperature coupling term

Re :

Reynolds number

T f :

Temperature of fluid

T p :

Temperature of particle

t :

Time

u :

Velocity of fluid

v :

Velocity of particle

x :

Position of particle

\( \overline{\nabla } T \) :

Mean temperature gradient

t :

Timestep

ρp :

Density of particle

ρf :

Density of fluid

τT :

Thermal response time of particle

τp :

Particle aerodynamic response time

ν:

Kinematic viscosity of fluid

μ:

Dynamic viscosity of fluid

δ:

London retardation wavelength

θ:

Fluctuation of temperature of fluid

Φ:

Volume fraction of particles

δ(x − x n):

Dirac delta function

λ:

Mean free path of the fluid molecule

i, j:

Tensor directions

,i :

Differentiation w.r.t x i

rms:

Root mean square

n :

nth particle

References

  • Apostulou K, Hrymak AN (2008) Discrete element simulation of liquid-particle flows. Comput Chem Eng 32:841–856

    Article  Google Scholar 

  • Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11:1129–1136

    Article  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1987) Spectral methods in fluid mechanics. Springer, New York

    Google Scholar 

  • Cardoso SSS, Zarrebini M (2001) Sedimentation of polydispersed particles from a turbulent plume. Chem Eng Sci 56:4725–4736

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231:99–105

    Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  • Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107

    Article  Google Scholar 

  • Ding Y, Wen D (2005) Particle migration in a flow of nanoparticle suspensions. Powder Technol 149:84–92

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Thompson LJ (1997) Enhanced Thermal conductivity through the development of nanofluids. In: Proceedings of the symposium on nanophase and nanocomposite materials II, Materials Research Society, Boston, vol 457, pp 3–11

  • Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  • Elperin T, Kleeorin N, Rogachevkii I (1996) Turbulent thermal diffusion of small inertial particles. Phys Rev Lett 76:224–227

    Article  Google Scholar 

  • Fujimoto T, Sy Terauchi, Umehara H, Kojima I, Henderson W (2001) Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem Mater 13:1057–1060

    Article  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  • Kondaraju S, Jin EK and Lee JS (2009) Direct numerical simulation of thermal conductivity of nanofluids: the effect of temperature two-way coupling and coagulation of particles. Int J Heat Mass Transf. doi:10.1016/j.ijheatmasstransfer.2009.11.038

  • Li A, Ahmadi G (1992) Dispersion and deposition of spherical particles from sources in a turbulent channel flow. Aerosol Sci Technol 16:209–226

    Article  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314

    Article  Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–887

    Article  MATH  Google Scholar 

  • Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48:363–371

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2006) A model for predicting the effective thermal conductivity of nanoparticles–fluid suspensions. Int J Nanosci 5:23–33

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008a) Investigations of thermal conductivity and viscosity of nanofluids. Int J Thermal Sci 47:560–568

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008b) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28:2109–2125

    Article  Google Scholar 

  • Spalart PR, Moser RD, Rogers MM (1991) Spectral methods for Navier-Stokes equations with one infinite and two periodic directions. J Comp Phys 96:297–324

    Article  MATH  MathSciNet  Google Scholar 

  • Sundaram S, Collins LR (1999) A numerical study of the modulation of isotropic turbulence by suspended particles. J Fluid Mech 379:105–143

    Article  MATH  Google Scholar 

  • Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758

    Article  Google Scholar 

  • Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203

    Article  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  • Wang X, Zhu D, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity of nanofluids. Chem Phys Lett 470:107–111

    Article  Google Scholar 

  • Wen D, Ding Y (2005) Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluid Nanofluid 1:183–189

    Article  Google Scholar 

  • Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  • Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043

    Article  Google Scholar 

  • Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123

    Article  Google Scholar 

  • Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9:131–139

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by grants from the National Science Foundation (ATM-0332910), National Oceanic and Atmospheric Administration (NA04OAR4310034), and National Aeronautics and Space Administration (NNG04GG46G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondaraju, S., Jin, E.K. & Lee, J.S. Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids. Microfluid Nanofluid 10, 133–144 (2011). https://doi.org/10.1007/s10404-010-0653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0653-9

Keywords

Navigation