Skip to main content
Log in

A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a microfluidic cross-flowing system for producing biphasic emulsion droplets and non-spherical polymer microparticles. Microfluidic channels on a glass chip comprise a Y-shaped channel so as to form a two-phase organic stream of photocurable and non-curable phases, and a T-junction to generate phase-separated droplets in a cross-flowing aqueous stream. The biphasic droplets at equilibrium formed a Janus configuration (partial engulfing) or a core–shell configuration (complete engulfing) consistent with minimizing the interfacial free energies among the three liquid phases, according to the three spreading coefficients. When silicone oil was used as the non-curable phase, monodisperse Janus droplets were generated reproducibly in a one-step process; for e.g., the mean particle size was 119 μm with a coefficient of variation (CV) of 1.9%. Subsequent UV-initiated polymerization yielded monodisperse particles with controlled convex/concave structures, which were tunable through variation of the ratio of the flow rates between the two organic phases. In contrast, when perfluorocarbon fluid, which is more hydrophobic than silicone oil, was used as the non-curable phase, monodisperse core–shell droplets were generated in a two-step regime, leading to the synthesis of cross-linked polymeric shells with a pore on their surfaces. We also investigated how the asymmetric flow configuration influenced droplet formation at the T-junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

Ca :

Capillary number

CV:

Coefficient of variation

D h :

Hydraulic diameter

DRIE:

Deep reactive ion etching

f b :

Rate of droplet breakup

HDDA:

1,6-hexanediol diacrylate

M w :

Molecular weight

PFC:

Perfluorocarbon fluid

PTFE:

Poly(tetrafluoroethylene)

PVA:

Polyvinyl alcohol

Q c :

Volumetric flow rate of the continuous phase

Q d :

Total volumetric flow rate of the photocurable and non-curable phases

Q m :

Volumetric flow rate of the photocurable monomer (HDDA)

Q p :

Volumetric flow rate of the perfluorocarbon fluid

Q s :

Volumetric flow rate of the silicone oil

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

S i :

Spreading parameter

UV:

Ultraviolet

v :

Flow velocity

wt%:

Weight percent

γ :

Interfacial tension or surface tension

γ 12 :

Interfacial tension at the interface 12

γ 23 :

Interfacial tension at the interface 23

γ 31 :

Interfacial tension at the interface 31

η :

Fluid viscosity

η m :

Viscosity of the photocurable monomer (HDDA)

η s :

Viscosity of the silicone oil

η p :

Viscosity of the perfluorocarbon fluid

ρ m :

Density of the photocurable monomer (HDDA)

ρ s :

Density of the silicone oil

ρ p :

Density of the perfluorocarbon fluid

References

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Bong KW, Pregibon DC, Doyle PS (2009) Lock release lithography for 3D and composite microparticles. Lab Chip 9:863–866

    Article  Google Scholar 

  • Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air–water interface. Langmuir 15:2450–2459

    Article  Google Scholar 

  • Chen CH, Shah RK, Abate AR, Weitz DA (2009) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25:4320–4323

    Article  Google Scholar 

  • Chou CS, Kowalski A, Rokowski JM, Schaller EJ (1987) Nonspherical acrylic latices. J Coat Technol 59:93–102

    Google Scholar 

  • Christopher GF, Noharuddin NN, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78:036317

    Article  Google Scholar 

  • De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. Fluid Mech 595:141–161

    MATH  Google Scholar 

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116

    Article  Google Scholar 

  • Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5:365–369

    Article  Google Scholar 

  • Dendukuri D, Hatton TA, Doyle PS (2007) Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 23:4669–4674

    Article  Google Scholar 

  • Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993

    Article  Google Scholar 

  • Fernández-Nieves A, Cristobal G, Garcés-Chávez V, Spalding GC, Dholakia K, Weitz DA (2005) Optically anisotropic colloids of controllable shape. Adv Mater 17:680–684

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junctions–scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  • Gracias DH, Tien J, Breen TL TL, Hsu C, Whitesides GM (2000) Forming electrical networks in three dimensions by self-assembly. Science 289:1170–1172

    Article  Google Scholar 

  • Gross GA, Hamann C, Günther M, Köhler JM (2007) Formation of polymer and nanoparticle doped polymer minirods by use of the microsegmented flow principle. Chem Eng Technol 30:341–346

    Article  Google Scholar 

  • Gupta A, Kumar R (2009) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid. doi:10.1007/s10404-009-0513-7

  • Gupta A, Murshed SMS, Kumar R (2009) Droplet formation and stability of flows in a microfluidic T-junctions. Appl Phys Lett 94:164107

    Article  Google Scholar 

  • Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8:1640–1647

    Article  Google Scholar 

  • Im SH, Jeong U, Xia Y (2005) Polymer hollow particles with controllable holes in their surfaces. Nat Mater 4:671–675

    Article  Google Scholar 

  • Lao KL, Wang JH, Lee GB (2009) A microfluidic platform for formation of double-emulsion droplets. Microfluid Nanofluid 7:709–719

    Article  Google Scholar 

  • Lu Y, Yin Y, Xia Y (2001) Three-dimensional photonic crystals with non-spherical colloids as building blocks. Adv Mater 13:415–420

    Article  Google Scholar 

  • Malloggi F, Pannacci N, Attia R, Monti F, Mary P, Willaime H, Tabeling P (2009) Monodisperse colloids synthesized with nanofluidic technology. Langmuir doi:10.1021/la9028047

  • Minami H, Kobayashi H, Okubo M (2005) Preparation of hollow polymer particles with a single hole in the shell by SaPSeP. Langmuir 21:5655–5658

    Article  Google Scholar 

  • Nie Z, Zu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–8063

    Article  Google Scholar 

  • Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–9412

    Article  Google Scholar 

  • Nisisako T (2008) Microstructured devices for preparing controlled multiple emulsions. Chem Eng Technol 31:1091–1098

    Article  Google Scholar 

  • Nisisako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19:1489–1493

    Article  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002a) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002b) Preparation of picoliter-sized reaction/analysis chambers for droplet-based chemical and biochemical systems. In: Baba Y et al (eds) Micro total analysis system 2002, vol 1. Kluwer Academic Publishers, Dordrecht, pp 362–364

  • Nisisako T, Torii T, Higuchi T (2004a) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004b) Separation of satellite droplets using branch microchannel configuration. In: Laurell T et al (eds) Micro total analysis system 2004, vol 1. The Royal Society of Chemistry, Cambridge, pp 312–314

  • Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156

    Article  Google Scholar 

  • Okubo M, Katsuta Y, Matsumoto T (1980) Rupture of anomalous composite-particles prepared by seeded emulsion polymerization. J Polym Sci Polym Lett Ed 18:481–486

    Article  Google Scholar 

  • Okubo M, Fujibayashi T, Terada A (2005) Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid Polym Sci 283:793–798

    Article  Google Scholar 

  • Pannacci N, Bruus H, Bartolo D, Etchart I, Lockhart T, Hennequin Y, Willaime H, Tabeling P (2008) Equilibrium and nonequilibrium states in microfluidic double emulsions. Phys Rev Lett 101:164502

    Article  Google Scholar 

  • Prasad N, Perumal J, Choi CH, Lee CS, Kim DP (2009) Generation of monodisperse inorganic-organic Janus microspheres in a microfluidic device. Adv Funct Mater 19:1656–1662

    Article  Google Scholar 

  • Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31:1099–1115

    Article  Google Scholar 

  • Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA (2006) Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22:8618–8622

    Article  Google Scholar 

  • Shepherd RF, Panda P, Bao Z, Sandhage KH, Hatton TA, Lewis JA, Doyle PS (2008) Stop-flow lithography of colloidal, glass, and silicon microcomponents. Adv Mater 20:4734–4739

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers. Langmuir 19:9127–9133

    Article  Google Scholar 

  • Torza S, Mason SG (1969) Coalescence of two immiscible liquid drops. Science 163:813–814

    Article  Google Scholar 

  • Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728

    Article  Google Scholar 

  • Yang SM, Kim SH, Lim JM, Yi GR (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18:2177–2190

    Article  Google Scholar 

  • Zhao CX, Middelberg APJ (2009) Microfluidic mass-transfer control for the simple formation of complex multiple emulsions. Angew Chem Int Ed 48:7208–7211

    Article  Google Scholar 

  • Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HLW (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9:2981–2986

    Article  Google Scholar 

  • Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982

    Article  Google Scholar 

Download references

Acknowledgments

TN gratefully acknowledges the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in Japan (Grant-in-Aid for Young Scientists (B) No. 19710114 and No. 21710124), Hosokawa Particle Technology Foundation, and Yazaki Memorial Foundation for Science & Technology for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takasi Nisisako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisisako, T., Hatsuzawa, T. A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles. Microfluid Nanofluid 9, 427–437 (2010). https://doi.org/10.1007/s10404-009-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0559-6

Keywords

Navigation