Skip to main content
Log in

Carbon-based nanoprobes for cell biology

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Since the discovery of carbon nanotubes, many researchers have attempted to utilize carbon nanotubes and nanopipes as nanoprobes, in particular for cell probing. These attempts have proved challenging due to the difficulty of interfacing the nanostructures with macroscopic handles. Recently, we developed a new manufacturing technique that allows us to fabricate integrated carbon nanopipettes (CNPs) that consist of a macroscopic glass handle with a carbon nanopipe at its tip. The manufacturing process does not require any assembly. The CNPs can function as multifunctional probes by allowing liquid flow through their hollow lumen and facilitating electrical measurements through their conductive carbon lining. Furthermore, the carbon nanopipe’s surface can be functionalized with proteins and oligonucleotides to facilitate the immobilization of macromolecules. In this review article, we recount the development of nanoprobes, discuss how prior art motivated the development of CNPs, and summarize the utilization of CNPs as cellular probes, in particular for injecting reagents into cells and for monitoring cell membrane potential. We also comment on the characteristics of liquid flow through the carbon pipes that form the CNPs’ tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1799

    Article  Google Scholar 

  • Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K (1999) Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 32:1044–1048

    Article  Google Scholar 

  • Anderson JL, Quinn JA (1972) Ionic mobility in microcapillaries: a test for anomalous water structures. J Chem Soc Faraday Trans I 68:744–748

    Article  Google Scholar 

  • Barber MA (1904) A new method of isolating micro-organisms. J Kansas Med Soc 4:489–494

    Google Scholar 

  • Bau HH, Sinha S, Kim B, Riegelman M (2004) The fabrication of nanofluidic devices and the study of fluid transport through them. In: Lai WY-C, Pau S, Lopez OD (eds) Nanofabrication: technologies devices and applications. Proceedings of SPIE, vol 5592, SPIE, Philadelphia, pp 201–213

  • Brailoiu E, Miyamoto MD (2000) Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum. Neuroscience 95:927–931

    Article  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Bio Rev 68:538–559

    Article  Google Scholar 

  • Brown KT, Flaming DG (1977) New microelectrode techniques for intracellular work in small cells. Neuroscience 2:813–827

    Article  Google Scholar 

  • Che G, Lakshmi BB, Martin CR, Fisher ER (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  Google Scholar 

  • Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218–8222

    Article  Google Scholar 

  • Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150

    Article  Google Scholar 

  • Debye P, Cleland RL (1959) Flow of liquid hydrocarbons in porous vycor. J Appl Phys 30:843–849

    Article  Google Scholar 

  • Dun NJ, Kaibara K, Karczmar AG (1977) Dopamine and adenosine 3’, 5’-monophosphate responses of single mammalian sympathetic neurons. Science 197:778–780

    Article  Google Scholar 

  • Freedman JR, Mattia D, Korneva G, Gogotsi Y, Friedman G, Fontecchio AK (2007) Magnetically assembled carbon nanotube tipped pipettes. Appl Phys Lett 90:103108

    Article  Google Scholar 

  • Gogotsi Y (2006) Nanotubes and nanofibers. CRC Press, Boca Raton, FL

    Google Scholar 

  • Graham J, Gerald RW (1946) Membrane potentials and excitation of impaled single muscle fibers. J Cell Comp Physiol 28:99–117

    Article  Google Scholar 

  • Hafner JH, Cheung C-L, Lieber CM (1999) Growth of nanotubes for probe microscopy tips. Nature 398:761–762

    Article  Google Scholar 

  • Hafner JH, Cheung C-L, Oosterkamp TH, Lieber CM (2001) High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopes. J Phys Chem B 105:743–746

    Article  Google Scholar 

  • Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005a) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20:2120–2125

    Article  Google Scholar 

  • Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005b) Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem Biophys Res Commun 332:633–639

    Article  Google Scholar 

  • Held J, Gaspar J, Koester PJ, Tautorat C, Cismak A, Heilmann A, Baumann W, Trautmann A, Ruther P, Paul O (2008) Microneedle arrays for intracellular recording applications. In: IEEE 21st international conference on micro electro mechanical systems, pp 268–271

  • Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  Google Scholar 

  • Hitchcock AP, Johansson GA, Mitchell GE, Keefe MH, Tyliszcak T (2008) 3-D chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope. Appl Phys A 92:447–452

    Article  Google Scholar 

  • Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  Google Scholar 

  • Kim BM, Bau HH (2005) A method for fabricating integrated nanostructures and applications thereof. Patent Application ED115805121US

  • Kim BM, Sinha S, Bau HH (2004) Optical microscope study of liquid transport in carbon nanotubes. Nano Lett 4:2203–2208

    Article  Google Scholar 

  • Kim BM, Qian S, Bau HH (2005a) Filling carbon nanotubes with particles. Nano Lett 5:873–878

    Article  Google Scholar 

  • Kim BM, Murray T, Bau HH (2005b) The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 16:1317–1320

    Article  Google Scholar 

  • King R (2004) Gene delivery to mammalian cells by microinjection. Methods Mol Biol 245:167–173

    Google Scholar 

  • Kleps I, Miu M, Craciunoiu F, Simion M (2007) Development of the micro- and nanoelectrodes for cells investigation. Microelectron Eng 84:1744–1748

    Article  Google Scholar 

  • Kouklin NA, Kim WE, Lazareck AD, Xu JM (2005) Carbon nanotube probes for single-cell experimentation and assays. Appl Phys Lett 87:173901

    Article  Google Scholar 

  • Kyotani T, Tsai LF, Tomita A (1995) Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem Mater 7:1427–1428

    Article  Google Scholar 

  • Laffafian I, Hallett MB (1998) Lipid-assisted microinjection: introducing material into the cytosol and membranes of small cells. Biophys J 75:2558–2563

    Article  Google Scholar 

  • Laffafian I, Hallett MB (2000) Gentle microinjection for myeloid cells using SLAM. Blood 95:3270–3271

    Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2005) Microfluidics: the no-slip boundary condition. In: Foss J, Tropea C, Yarin A (eds) Handbook of experimental fluid dynamics, Chap 15. Springer, New York

  • Leary SP, Liu CY, Apuzzo ML (2006) Toward the emergence of nanoneurosurgery: Part III-nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. J Neurosurgery 58:1009–1026

    Article  Google Scholar 

  • Li C-Y, Xu X-Z, Tigwell D (1995) A simple and comprehensive method for the construction, repair and recycling of single and double tungsten microelectrodes. J Neurosci Meth 57:217–220

    Article  Google Scholar 

  • Ling G, Gerald RW (1949) The normal membrane potential of frog sartorious fibers. J Cell Comp Physiol 34:383–396

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Enhanced flow in carbon nanotubes. Nature 438:44

    Article  Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthesis approach. Science 266:1961–1966

    Article  Google Scholar 

  • Matsuoka H, Saito M (2006) High throughput microinjection technology toward single-cell bioelectrochemistry. Electrochemistry 74:12–18

    Google Scholar 

  • Mattia DM, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006) Effect of graphitization on the wettability and electrical conductivity of cvd-carbon nanotubes and films. J Phys Chem B 110:9850–9855

    Article  Google Scholar 

  • Merril EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662–672

    Article  Google Scholar 

  • Miller SA, Young VY, Martin CR (2001) Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc 123:12335–12342

    Article  Google Scholar 

  • Naguib N, Ye H, Gogotsi Y, Guvenc-Yazicioglu A, Megaridis CM, Yoshimura M (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243

    Article  Google Scholar 

  • Naguib NN, Mueller YM, Bojczuk PM, Rossi MP, Katsikis PD, Gogotsi Y (2005) Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16:567–571

    Article  Google Scholar 

  • Nastuk WL (1951) Membrane potential changes at a single muscle end plate produced by acetylcholine. Fed Proc 10:96

    Google Scholar 

  • Nastuk WL (1953) Membrane potential changes at a single muscle end-plate produced by transitory application of acetylcholine with an electrically controlled microjet. Fed Proc 12:102

    Google Scholar 

  • Neafsey EJ (1981) A simple method for glass insulating tungsten microelectrodes. Brain Res Bull 6:95–96

    Article  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membranes of denervated frog muscle fibres. Nature 260:799–802

    Article  Google Scholar 

  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005a) Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron 20:1652–1655

    Article  Google Scholar 

  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005b) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27–30

    Article  Google Scholar 

  • Patil A, Sippel J, Martin GW, Rinzler AG (2004) Enhanced functionality of nanotube atomic force microscopy tips by polymer coating. Nano Lett 4:303–308

    Article  Google Scholar 

  • Poiseuille JML (1846) Experimental investigations upon the flow of liquids in tubes of very small diameters. Sciences Mathematiques et Physiques 9:433–545 (translated from French to English by Bingham EC)

    Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  • Purves RD (1980) The mechanics of pulling a glass micropipette. Biophys J 29:523–529

    Article  Google Scholar 

  • Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250

    Article  Google Scholar 

  • Rossi MP, Ye HH, Gogotsi Y, Babu S, Ndungu P, Bradley JC (2004) Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett 4:989–993

    Article  Google Scholar 

  • Schrlau MG, Falls ER, Ziober BL, Bau HH (2008a) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 19:015101

    Article  Google Scholar 

  • Schrlau MG, Brailoiu E, Patel S, Gogotsi Y, Dun NJ, Bau HH (2008b) Carbon nanopipettes characterize calcium release pathways in breast cancer cells. Nanotechnology 19:325102

    Article  Google Scholar 

  • Schrlau MG, Dun NJ, Bau HH (2009) Cell electrophysiology with carbon nanopipettes. ACS Nano Article ASAP. doi:10/1021/nn800851d

  • Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  Google Scholar 

  • Sinha S, Rossi MP, Mattia D, Gogotsi Y, Bau HH (2007) Induction and measurement of minute flow rates through nanopipes. Phys Fluids 19:013603

    Article  Google Scholar 

  • Stephens DJ, Pepperkok R (2001) The many ways to cross the plasma membrane. Proc Natl Acad Sci USA 98:4295–4298

    Article  Google Scholar 

  • Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2007) Nanoelectrochemistry of mammalian cells. Proc Natl Acad Sci USA 105:443–448

    Article  Google Scholar 

  • Tsai ML, Chai CY, Yen C-T (1997) A method for the construction of a recording-injection microelectrode with glass-insulated microwire. J Neurosci Meth 72:1–4

    Article  Google Scholar 

  • Tsulaia TV, Prokopishyn NL, Yao A, Carsrud ND, Carou MC, Brown DB, Davis BR, Yannariello-Brown J (2003) Glass needle-mediated microinjection of macromolecules and transgenes into primary human mesenchymal stem cells. J Biomed Sci 10:328–336

    Article  Google Scholar 

  • Vakarelski IU, Brown SC, Higashitani K, Moudgil BM (2007) Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23:10893–10896

    Article  Google Scholar 

  • Vitol EA, Schrlau MG, Inamdar N, Bau HH, Gogotsi Y, Friedman G (2008) Raman spectroscopy analysis of synthesis effects on carbon nanopipette properties. In: Proceedings of ACS conference, Philadelphia

  • Windhorst U, Johansson H (1999) Modern techniques in neuroscience research. Springer, Berlin

    Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Article  Google Scholar 

  • Yenilmez E, Wang Q, Chen RJ, Wang D, Dai H (2002) Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy. Appl Phys Lett 80:2225

    Article  Google Scholar 

  • Yum K, Cho HN, Hu L, Yu M-F (2007) Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments. ACS Nano 1:440–448

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Nanotechnology Institute, Ben Franklin Technology Partners of Southeastern Pennsylvania, and the NSF-NIRT (CBET 0609062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim H. Bau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrlau, M.G., Bau, H.H. Carbon-based nanoprobes for cell biology. Microfluid Nanofluid 7, 439 (2009). https://doi.org/10.1007/s10404-009-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0458-x

Keywords

Navigation