Skip to main content
Log in

Particle separation in alternating-current electro-osmotic micropumps using field-flow fractionation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work presents a novel method for continuous particle separation on the microscale by means of field-flow fractionation. It is based on the use of asymmetric interdigitated electrode arrays on the channel bottom, which induce an electro-osmotic channel flow when driven harmonically. Suspended particles are influenced by viscous fluid drag, sedimentation as well as by dielectrophoretic repulsion forces from the driving electrodes due to the emerging electric field. The significant dependance of the present forces on particle properties allows for separation with respect to particle density and size. This work analyzes electric and flow field by means of the finite element method and investigates the size and density dependent particle motion as a function of driving voltage and frequency of the electrode array. Matching these driving parameters permits the separation of sedimenting particles by their density independently from their size as well as the separation by size. Finally, channel designs are proposed which enable standard separation by means of selective particle mobility in the channel, separation in terms of opposing motion directions, as well as continuous lateral separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61(1):R45–R48

    Article  Google Scholar 

  • Aldaeus F, Lin Y, Amberg G, Roeraade J (2006) Multi-step dielectrophoresis for separation of particles. J Chrom A 1131(1–2):261–266

    Article  Google Scholar 

  • Castellanos A, Ramos A, González A, Green NG, Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36(20):2584–2597

    Article  Google Scholar 

  • Fan LS, Zhu C (1998) Principles of gas–solid flows. Cambridge University Press, London

  • Green NG, Morgan H, Milner JJ (1997) Manipulation and trapping of sub-micron bioparticles using dielectrophoresis. J Biochem Biophys Meth 35(2):89–102

    Article  Google Scholar 

  • Green NG, Ramos A, González A, Morgan H, Castellanos A (2002) Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E 66(2):026305

    Article  Google Scholar 

  • Hilber W, Weiss B, Mikolasek M, Holly R, Hingerl K, Jakoby B (2008) Particle manipulation using 3D AC electro-osmotic micropumps. J Micromech Microeng 18:6

    Article  Google Scholar 

  • Huang Y, Wang XB, Becker FF, Gascoyne PR (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73(2):1118–1129

    Article  Google Scholar 

  • Huh D, Bahng J, Ling Y, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79(4):1369–1376

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007a) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75(2):021502

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007b) Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys Rev E 75(2):021503

    Article  Google Scholar 

  • Minerick AR, Zhou R, Takhistov P, Chang HC (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24:3703–3717

    Article  Google Scholar 

  • Morgan H, Hughes M, Green N (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77(1):516–525

    Article  Google Scholar 

  • Myers MN (1997) Overview of field-flow fractionation, chap 9. Wiley, NewYork, pp 151–162

  • Olesen LH, Bruus H, Ajdari A (2006) AC electrokinetic micropumps: the effect of geometrical confinement, faradaic current injection, and nonlinear surface capacitance. Phys Rev E 73(5):056313

    Article  Google Scholar 

  • Petersson F, Aberg L, Sward-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis. Cambridge University Press, London

  • Radko Sergey PCA (1999) Capillary electrophoresis of subcellular-sized particles. J Chrom B 722(1–2):1–10

    Google Scholar 

  • Ramos A, González A, Castellanos A, Green NG, Morgan H (2003) Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes. Phys Rev E 67(5):056302

    Article  Google Scholar 

  • Tuval I, Mezić I, Bottausci F, Zhang YT, MacDonald NC, Piro O (2005) Control of particles in microelectrode devices. Phys Rev Lett 95(23):236002

    Article  Google Scholar 

  • Urbanski JP, Levitan JA, Burch DN, Thorsen T, Bazant MZ (2007) The effect of step height on the performance of three-dimensional AC electro-osmotic microfluidic pumps. J Coll Interf Sci 309(2):332–341

    Article  Google Scholar 

  • Vastamäki P, Jussila M, Riekkola ML (2005) Continuous two-dimensional field-flow fractionation: a novel technique for continuous separation and collection of macromolecules and particles. Analyst 130:427–432

    Article  Google Scholar 

  • Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–750

    Article  Google Scholar 

  • Wang XB, Vykoukal J, Becker FF, Gascoyne PR (1998) Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys J 74(5):2689–2701

    Article  Google Scholar 

  • Weiss B, Hilber W, Holly R, Gittler P, Jakoby B, Hingerl K (2008) Dielectrophoretic particle dynamics in alternating-current electro-osmotic micropumps. Appl Phys Lett 92(18):184101

    Article  Google Scholar 

  • Zhang Y, Barber RW, Emerson DR (2005) Particle separation in microfluidic devices—splitt fractionation and microfluidics. Curr Anal Chem 1(3):345–354

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, B., Hilber, W., Gittler, P. et al. Particle separation in alternating-current electro-osmotic micropumps using field-flow fractionation. Microfluid Nanofluid 7, 191–203 (2009). https://doi.org/10.1007/s10404-008-0374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0374-5

Keywords

Navigation