Skip to main content
Log in

Temperature modeling and measurement of an electrokinetic separation chip

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work presents experimental [infrared (IR) thermography] and computational (finite element model) results of temperature distributions of an electrokinetic separation chip. Thermal characteristics of both the electrolyte solution and the polymer chip (SU-8) are taken into account in modeling temperature distributions during electrokinetic flow. Multiphysics and multiscale simulation couples electrostatics, heat transfer, and fluid dynamics. The accompanying IR thermography is a non-contact method, which can measure fractional temperature differences with sub-second time resolution. Any structures or temperature marker molecules interfering with the experiment are not needed. Nominal spot size in the IR measurements is 30 μm with a field of view of several millimeters enabling both local and chip-scale temperature monitoring simultaneously. As a result, we present a computer model for electrokinetic chips, which enables simulation of fractional temperature changes during electrophoresis under real operating conditions. The accuracy of the model is within ±1°C when the deviation in electrochemical processes is taken into account. The simulation results also suggest that the temperature on the chip surface qualitatively reflects the temperature inside the microchannel with an average offset of 1–2°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allison SW, Gilles GT (1997) Remote thermometry with thermographic phosphors: instrumentation and applications. Rev Sci Instrum 68:2615–2650

    Article  Google Scholar 

  • Benninger RKP, Koc Y, Hofmann O, Requejo-Isidro J, Neil MAA, French PMW, deMello AJ (2006) Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging. Anal Chem 78:2272–2278

    Article  Google Scholar 

  • Chaudhari AM, Woudenberg TM, Albin M, Goodson KE (1998) Transient liquid crystal thermometry of microfabricated PCR vesselarrays. J Microelectromech Syst 7:345–355

    Article  Google Scholar 

  • Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluid 1:301–318

    Article  Google Scholar 

  • Erickson D, Sinton D, Li D (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab Chip 3:141–149

    Article  Google Scholar 

  • Franssila S, Marttila K, Kolari P, Östman T, Kotiaho T, Kostiainen R, Lehtiniemi R, Fager C-M, Manninen J (2006) A microfabricated nebulizer for liquid vaporization in chemical analysis. J Microelectromech Syst 15:1251–1259

    Article  Google Scholar 

  • Golonka LJ, Rugyszczak H, Zawada T, Radojewski J, Grabowska I, Chudy M, Dybko A, Brzozka Z, Stadnik D (2005) LTCC based microfluidic system with optical detection. Sens Actuators B 111–112:396–402

    Article  Google Scholar 

  • Guerin L, Bossel M, Demierre M, Calmes S, Renaud P (1997) Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic. In: Proceedings of the Transducers ‘97 conference, Chicago

  • Hardt S, Schilder B, Tiemann D, Kolb G, Hessel V, Stephan P (2007) Analysis of flow patterns emerging during evaporation in parallel microchannels. Int J Heat Mass Transf 50:226–239

    Article  Google Scholar 

  • Horiuchi K, Dutta P (2004) Joule heating effects in electroosmotically driven microchannel flows. Int J Heat Mass Transf 47:3085–3095

    Article  MATH  Google Scholar 

  • Incroprera FP, De Witt DP (1985) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Karniadakis GE, Beskok A (2002) Microflows: fundamentals and simulation. Springer, New York

    Google Scholar 

  • Kim SH, Noh J, Jeon MK, Kim KW, Lee LP, Woo SI (2006) Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip. J Micromech Microeng 16:526–530

    Article  Google Scholar 

  • Kutter JP, Mogensen KB, Klank H, Geschke O (2004) Microfluidics—components. In: Geschke O, Klank H, Tellemann P (eds) Microsystem engineering of lab-on-a-chip devices. Wiley-VCH, Weinheim

    Google Scholar 

  • Lide DR (ed) (2006) CRC handbook of chemistry and physics, 87th edn. CRC Press, Boca Raton

    Google Scholar 

  • Patil VA, Narayanan V (2006) Spatially resolved temperature measurement in microchannels. Microfluid Nanofluid 2:291–300

    Article  Google Scholar 

  • Petersen NJ, Nikolajsen RPH, Mogensen KB, Kutter JP (2004) Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: A closer look. Electrophoresis 25:253–269

    Article  Google Scholar 

  • Reitz JR, Milford FJ, Christy RW (1979) Foundations of electromagnetic theory. Addison-Wesley, Boston

    Google Scholar 

  • Ross D, Gaitan M, Locascio LE (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73:4117–4123

    Article  Google Scholar 

  • Saeki S, Funakoshi J, Saito T, Nakamura K, Nishida T (2006) Quantitative temperature measurement of micro-electrophoretic flow using two-color laser-induced fluorescence. In: Proceedings of the 10th international conference on miniaturized systems for chemistry and life sciences (MicroTAS), Tokyo

  • Sato Y, Irisawa G, Ishizuka M, Hishida K, Maeda M (2003) Visualization of convective mixing in microchannel by fluorescence imaging. Meas Sci Technol 12:114–121

    Article  Google Scholar 

  • Shin WC, Besser RS (2006) A micromachined thin-film gas flow sensor for microchemical reactors. J Micromech Microeng 16:731–741

    Article  Google Scholar 

  • Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T (2005) Characterization of SU-8 for electrokinetic microfluidic applications. Lab Chip 5:888–896

    Article  Google Scholar 

  • Swinney K, Bornhop DJ (2002) Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23:613–620

    Article  Google Scholar 

  • Tang GY, Yang C, Chai JC, Gong HQ (2004a) Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels. Anal Chim Acta 507:27–37

    Article  Google Scholar 

  • Tang GY, Yang C, Chai JC, Gong HQ (2004b) Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int J Heat Mass Transf 47:215–277

    Article  MATH  Google Scholar 

  • Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120:408–415

    Article  Google Scholar 

  • Venditti R, Xuan X, Li D (2006) Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluid Nanofluid 2:493–499

    Article  Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill, New York (Appendix A)

    Google Scholar 

  • Xu Y, Chiu C-W, Jiang F, Lin Q, Tai Y-C (2005) A MEMS multi-sensor chip for gas flow sensing. Sens Actuators A 121:253–261

    Article  Google Scholar 

  • Xue Z, Qiu H (2005) Integrating micromachined fast response temperature sensor array in a glass microchannel. Sens Actuators A 122:189–195

    Article  Google Scholar 

  • Zhang Y, Tadigadapa S (2005) Thermal characterization of liquids and polymer thin films using a microcalorimeter. Appl Phys Lett 86:034101 (3 pages)

    Article  Google Scholar 

  • Zhang Y, Bao N, Yu X-D, Xu J-J, Chen H-Y (2004) Improvement of heat dissipation for polydimethylsiloxane microchip electrophoresis. J Chromatogr A 1057:247–251

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the National Technology Agency of Finland (TEKES), the Academy of Finland (project no. 211019), the University of Helsinki Research Funds and the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Sikanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikanen, T., Zwinger, T., Tuomikoski, S. et al. Temperature modeling and measurement of an electrokinetic separation chip. Microfluid Nanofluid 5, 479–491 (2008). https://doi.org/10.1007/s10404-008-0260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0260-1

Keywords

Navigation