Skip to main content
Log in

Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

By means of microfluidic analysis with a thermal lattice-Boltzmann method, we investigated the hydrophilic, thermal and geometric effects on the dynamics of CO2 bubbles at anode microchannels (e.g., porous layers and flow channels) of a micro-direct methanol fuel cell. The simulation results show that a more hydrophilic wall provides an additional attractive force to the aqueous methanol in the flow direction and that moves the CO2 bubble more easily. The bubble propagates quicker in the microchannel with a positive temperature gradient imposed from the inlet to the exit, mainly due to the Marangoni effect. Regarding the geometric effect of the microchannel, the bubble moves more rapidly in a divergent microchannel than in a straight or convergent channel. On the basis of the quantitative evaluation of hydrophilic, thermal and geometric effects, we are able to design the bubble-removal technique in micro fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

e :

lattice velocity vector

e :

lattice speed (cm/s)

f :

density distribution function (g/cm3)

g :

thermal distribution function (g K/cm3)

\(G^{{\sigma \sigma^{\prime}}}\) :

interaction strength between the species σ and the other species σ′ (cm3/g s)

G σ :

fluid–solid interaction potential parameter of the species σ

G :

gravitational constant (cm/s2)

G′:

non-dimensional constant

T :

temperature (K)

t :

time (s)

U :

velocity vector(u,v)

u :

velocity in the x-direction (cm/s)

v :

velocity in the y-direction (cm/s)

X :

position vector (x,y)

β:

thermal expansion coefficient (1/K)

ρ:

density (g/cm3)

θ:

contact angle (°)

τ:

collision time for momentum transfer

τ T :

collision time for energy transfer

ψ:

function of the mass density

i :

lattice velocity directions

∞:

reference state

eq:

equilibrium

σ:

species

References

  • Fei K, Hong CW (2007) All-angle removal of CO2 bubbles from the anode microchannels of a micro fuel cell by lattice-Boltzmann simulation. Microfluid Nanofluid 3:77–88

    Article  Google Scholar 

  • Fei K, Cheng CH, Hong CW (2006) Lattice Boltzmann simulations of CO2 bubble dynamics at the anode of a μDMFC. Trans ASME J Fuel Cell Sci Tech 3:180–187

    Article  Google Scholar 

  • Guo Z, Zheng C, Shi B, Zhao TS (2007) Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. Phys Rev E 75:036704-1-036704-15

    Google Scholar 

  • Inamuro T, Yoshino M, Inoue H, Mizuno R, Ogino F (2002) A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys 179:201–215

    Article  MATH  Google Scholar 

  • Jun TK, Kim CJ (1998) Valveless pumping using traversing vapor bubbles in microchannels. J Appl Phys 83:5658–5664

    Article  Google Scholar 

  • Lu GQ, Wang CY (2004) Electrochemical and flow characterization of a direct methanol fuel cell. J Power Sources 134:33–40

    Article  MathSciNet  Google Scholar 

  • Shan X (1997) Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys Rev E 55:2780–2788

    Article  Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    Article  Google Scholar 

  • Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948

    Article  Google Scholar 

  • Shi Y, Zhao TS, Guo ZL (2004) Thermal lattice Bhatnagar–Gross–Krook model for flows with viscous heat dissipation in the impressible limit. Phys Rev E 70:066310-1–066310-10

    Google Scholar 

  • Takahashi K, Weng JG, Tien CL (1999) Marangoni effect in microbubble systems. Microscale Therm Eng 3:169–182

    Article  Google Scholar 

  • Takahashi K, Yoshino K, Hatano S, Nagayama K, Asano T (2001) Novel applications of thermally controlled microbubble driving system. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) 286–298

  • Wong CW, Zhao TS, Ye Q, Liu JG (2005) Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance. J Electrochem Soc 152:A1600–A1605

    Article  Google Scholar 

  • Yang H, Zhao TS, Ye Q (2005) In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields. J Power Sources 139:79–90

    Article  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc 95:65–87

    Article  Google Scholar 

  • Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6:350–356

    Article  MATH  Google Scholar 

  • Yuan P, Schaefer L (2006a) A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems-Part 1. Theoretical foundation. Trans ASME J Fluids Eng 128:142–150

    Article  Google Scholar 

  • Yuan P, Schaefer L (2006b) A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems-Part 2. Integration and validation. Trans ASME J Fluids Eng 128:151–156

    Article  Google Scholar 

Download references

Acknowledgments

National Science Council (contract NSC 95-2218-E-007-001) provided financial support; National Center for High-performance Computing provided high-speed computer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, K., Chen, W.H. & Hong, C.W. Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method. Microfluid Nanofluid 5, 119–129 (2008). https://doi.org/10.1007/s10404-007-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0232-x

Keywords

Navigation