Skip to main content
Log in

Guiding water into carbon nanopipes with the aid of bipolar electrochemistry

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The targeted bipolar electrodeposition of polypyrrole was carried out onto the tips of hydrophilic carbon nanopipes. By aligning an external electric field relative to the nanopipes, the deposition of polypyrrole onto selected ends could be achieved without physically contacting the nanopipes. After deposition, carbon nanopipes with both partially open and fully blocked tips were found. Experiments conducted in an environmental scanning electron microscope showed that water enters the nanopipes through the tip with polypyrrole due to the higher hydrophilicity of the polymer compared to the tube walls. As a result, it was possible to guide the entry of water from a specific end of the tube and fill the tube from the selected side. Condensation experiments conducted on nanopipes with polypyrrole on both tips shows the difference in hydrophilicity of the nanopipes compared to the polypyrrole. The ability to selectively control the site of condensation and uptake of fluid by carbon nanotubes or nanopipes is very important for the development of nanotube-based nanofluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradley J, Ma Z, Christaffer S, Crawford J, Ernazarova K, Stephens SG (1999) The construction of circuitry using spatially coupled bipolar electrochemistry. ACS Symp Ser 735:429–439

    CAS  Google Scholar 

  • Bradley JC, Dengra S, Gonzalez GA, Marshall G, Molina FV (1999) Ion transport and deposit growth in spatially coupled bipolar electrochemistry. J Electroanal Chem 478:128–139

    Article  CAS  Google Scholar 

  • Bradley J, Babu S, Mittal A, Ndungu P, Carroll B, Samuel B (2001) Pulsed bipolar electrodeposition of palladium onto graphite powder. J Electrochem Soc 148:C647–C651

    Article  CAS  Google Scholar 

  • Bradley J, Babu S, Carroll B, Mittal A (2002) A study of spatially coupled bipolar electrochemistry on the sub-micrometer scale: colloidal particles on surfaces and cylinders in nuclear-track etched membranes. J Electroanal Chem 522:75–85

    Article  CAS  Google Scholar 

  • Bradley J, Ndungu P, Babu S, Tromp J, Hackett N (2003) Bipolar electrodeposition of polypyrrole onto carbon nanotubes 1. Chemistry Preprint Server, Miscellaneous 1–4, CPS: chemistry/0308001

  • Bradley J-C, Babu S, Ndungu P (2004) Site selective electrodeposition of metals and conductive polymer nano-structures on isolated carbon nanopipes using electric fields. Mat Res Soc Symp Proc 818: 361–369

    CAS  Google Scholar 

  • Fleischmann M, Ghoroghchian J, Pons S (1985) Electrochemical behavior of dispersions of spherical ultramicroelectrodes. 1. Theoretical considerations. J Phys Chem 89:5530–5536

    Article  CAS  Google Scholar 

  • Gao M, Dai L, Wallace GG (2003) Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15:1089–1094

    Article  CAS  Google Scholar 

  • Gogotsi Y, Libera JA, Guvenc-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79:1021–1023

    Article  CAS  Google Scholar 

  • Gogotsi Y, Naguib N, Libera JA (2002) In situ chemical experiments in carbon nanotubes. Chem Phys Lett 365:354–360

    Article  CAS  Google Scholar 

  • Hwang HR, Roh JG, Lee DD, Lim JO, Huh JS (2003) Sensing behavior of the polypyrrole and polyaniline sensor for several volatile organic compounds. Met Mater Int 9:287–291

    CAS  Google Scholar 

  • Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100:10175–10180

    Article  CAS  PubMed  Google Scholar 

  • Keh HJ, Li WJ (1994) Interactions among bipolar spheres in an electrolytic cell. J Electrochem Soc 141:3103–3114

    CAS  Google Scholar 

  • Kim BM, Sinha S, Bau HH (2004) Optical microscope study of liquid transport in carbon nanotubes. Nano Lett 4:2203–2208

    Article  CAS  Google Scholar 

  • Miller SA, Young VY, Martin CR (2001) Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc 123:12335–12342

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Gogotsi Y (2004) Environmental SEM studies of nanofiber-liquid interactions. Microsc Anal (The Americas Edition) 18:9

    Google Scholar 

  • Rossi MP, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J (2004) Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett 4:989–993

    Article  CAS  Google Scholar 

  • Sobolev VD, Churaev NV, Velarde MG, Zorin ZM (2000) Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries. J Colloid Interface Sci 222:51–54

    Article  CAS  PubMed  Google Scholar 

  • Supple S, Quirke N (2003) Rapid imbibition of fluids in carbon nanotubes. Phys Rev Lett 90:214501/1–214501/4

    Article  CAS  Google Scholar 

  • Tessier D, Dao LH, Zhang Z, King MW, Guidoin R (2000) Polymerization and surface analysis of electrically-conductive polypyrrole on surface-activated polyester fabrics for biomedical applications. J Biomat Sci Polym E 11:87–99

    Article  CAS  Google Scholar 

  • Thiel BL, Bache IC, Fletcher AL, Meredith P, Donald AM (1997) An improved model for gaseous amplification in the environmental SEM. J Microsc Oxford 187:143–157

    Article  CAS  Google Scholar 

  • Waghe A, Rasaiah JC, Hummer G (2002) Filling and emptying kinetics of carbon nanotubes in water. J Chem Phys 117:10789–10795

    Article  CAS  Google Scholar 

  • Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105:9980–9987

    Article  CAS  Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Noca F, Koumoutsakos P (2001) Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett 1:697–702

    Article  CAS  Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under NIRT Grant Number CTS-0235234 and NSF CAREER award CHE-9875855. Purchase of the ESEM was supported by NSF Grant Number BES-0216343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Bradley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S., Ndungu, P., Bradley, JC. et al. Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid Nanofluid 1, 284–288 (2005). https://doi.org/10.1007/s10404-005-0037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0037-8

Keywords

Navigation