Skip to main content

Advertisement

Log in

The Link Between Rapid Enigmatic Amphibian Decline and the Globally Emerging Chytrid Fungus

  • Short Communication
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Amphibians are globally declining and approximately one-third of all species are threatened with extinction. Some of the most severe declines have occurred suddenly and for unknown reasons in apparently pristine habitats. It has been hypothesized that these “rapid enigmatic declines” are the result of a panzootic of the disease chytridiomycosis caused by globally emerging amphibian chytrid fungus. In a Species Distribution Model, we identified the potential distribution of this pathogen. Areas and species from which rapid enigmatic decline are known significantly overlap with those of highest environmental suitability to the chytrid fungus. We confirm the plausibility of a link between rapid enigmatic decline in worldwide amphibian species and epizootic chytridiomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  • Alford RA, Bradfield KS, Richards SJ (2007) Ecology: global warming and amphibian losses. Nature 447:E3-E4

    Article  CAS  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361-367

    Article  CAS  Google Scholar 

  • Andre SE, Parker J, Briggs CJ (2008) Effect of temperature on host response to Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog (Rana muscosa). Journal of Wildlife Diseases 44:716-720

    Google Scholar 

  • Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting susceptibility to future declines in the world’s frogs. Conservation Letters 1:82-90

    Article  Google Scholar 

  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  CAS  Google Scholar 

  • Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conservation 97:331–337

    Article  Google Scholar 

  • Bosch J, Carrascal LM, Duran L, Walker S, Fisher MC (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain: is there a link? Proceedings of the Royal Society B-Biological Sciences 274:253-260

    Article  Google Scholar 

  • Cleaveland S, Hess GR, Dobson AP, Laurenson MK, McCallum HI, Roberst MG, Woodroffe R (2002) The role of pathogens in biological conservation. In: The Ecology of Wildlife Diseases, Hudson PJ, Grenfell BT, Heesterbeek H, Dobson AP (editors), Oxford, UK: Oxford University Press, pp 139-150

    Google Scholar 

  • Cunningham AA, Daszak P, Rodriguez JP (2003) Pathogen polution: defining a parasitological threat to biodiversity conservation. Journal of Parasitology 89(Suppl):S78-S83

    Google Scholar 

  • Daszak P, Tabor GM, Kilpatrick AM, Epstein J, Plowright R (2004) Conservation medicine and a new agenda for emerging diseases. Annals of the New York Academy of Sciences 1026:1-11

    Article  Google Scholar 

  • Dormann CF, McPherson J, Araújo MB, Bivand R, Bollinger J, Carl G, et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609-628

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151

    Article  Google Scholar 

  • Fisher M.C, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time and host. Annual Review of Microbiology 63:291-310

    Article  CAS  Google Scholar 

  • Gascon C, Collins JP, Moore RD Church DR, McKay JE, Mendelson III JR (2007) Amphibian Conservation Action Plan. Gland, Switzerland, Cambridge, UK: IUCN, Conservation International

  • Gaston KJ, Fuller RA (2008) The sizes of species’ geographic ranges. Journal of Applied Ecology 46:1–9

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modeling 135:147-186

    Article  Google Scholar 

  • Hijmans RJ, Cruz JM, Rojas E, Guarino L (2001) DIVA-GIS, Version 1.4. Data. Manual. Lima, Peru: International Potato Center and International Plant Genetic Resources Institute

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978

    Article  Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy if Sciences 1134:1-24

    Article  Google Scholar 

  • Kielgast J, Rödder D, Veith M, Lötters S (2010) Widespread occurrence of the amphibian chytrid fungus in Kenya. Animal Conservation 13:1–8

    Google Scholar 

  • Kriger KM, Hero JM (2007) Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. Journal of Zoology 271:352-359

    Google Scholar 

  • Kriger KM, Pereoglou F, Hero J-M (2007) Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in Eastern Australia. Conservation Biology 21:1280-1290

    Article  Google Scholar 

  • Lafferty KD, Gerber LR (2002) Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conservation Biology 16:593-604

    Article  Google Scholar 

  • Laurance WF (2008) Global warming and amphibian extinctions in eastern Australia. Australian Ecology 33:1-9

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Science of the USA 102:3165-3170

    Article  Google Scholar 

  • Lips KR, Diffendorfer J, Mendelson III JR, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6:441-454

    Article  CAS  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393

    Article  Google Scholar 

  • Lötters S, Haas W, Schick S, Böhme W (2002) On the systematics of the harlequin frogs (Amphibia: Bufonidae: Atelopus) from Amazonia. II: Redescription of Atelopus pulcher (Boulenger, 1882) from the eastern Andean versant in Peru. Salamandra 38:165-184

    Google Scholar 

  • Lötters S, Rödder D, Bielby J, Bosch J, Garner TWJ, Kielgast J, et al. (2008) Meeting the challenge of conserving Madagascar’s megadiverse amphibians: addition of a risk-assessment for the chytrid fungus. PLoS Biology 6

  • Lötters S, Schulte R, Córdova JH, Veith M (2005) Conservation priorities for harlequin frogs (Atelopus spp.) of Peru. Oryx 39:343-346

    Article  Google Scholar 

  • Luger M, Garner TJW, Ernst R, Hödl W, Lötters S (2008) No evidence for precipitous declines in harlequin frogs (Atelopus) in the Guyanas. Studies on Neotropical Fauna & Environemnt 43:177-180

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921-931

    Article  Google Scholar 

  • McCallum H (2008) Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology & Evolution 23:631-637

    Article  Google Scholar 

  • McCallum H, Dobson A (1995) Detecting disease and parasite threats to eandangered species and ecosystems. Trends in Ecology & Evolution 10:190-194

    Article  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272-278

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and comprehensive evaluation. Ecography 31:161-175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modeling 190:231-259

    Article  Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9-15

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161-167

    Article  CAS  Google Scholar 

  • Puschendorf R, Carnaval AC, VanDerWal J, Zumbado-Ulate H, Chaves G, Bolaños F, et al. (2009) Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool. Diversity and Distributions 15:401-408

    Article  Google Scholar 

  • Rachowicz LJ, Knapp RA, Morgan JAT, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671-1683

    Article  Google Scholar 

  • Rahbek C (2007) Disease ecology: The silence of the robins. Nature 447:652-653

    Article  CAS  Google Scholar 

  • Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, et al. (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52-66

    Article  Google Scholar 

  • Rödder D, Veith M, Lötters S (2008) Environmental gradients explaining prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective Animal Conservation 11:513-517

    Article  Google Scholar 

  • Ron SR (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Biotropica 37:209-221

    Article  Google Scholar 

  • Rueda-Almonacid JV, Rodríguez-Mahecha JV, La Marca E, Lötters S, Kahn T, Angulo A (2005) Ranas arlequines. Serie Libretas de Campo 5. Bogotá DE, Colombia: Conservación Internacional Colombia

    Google Scholar 

  • Schloegel LM, Hero JM, Berger L, Speare R, McDonald K, Daszak P (2006) The decline of the sharp-snouted day frog (Taudactylus acutirostris): The first documented case of extinction by infection in a free-ranging wildlife species? EcoHealth 3:35-40

    Article  Google Scholar 

  • Scott ME (1988) The impact of infection and disease on animal Populations: Implications for Conservation Biology. Conservation Biology 2:40-56

    Article  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125-134

    Article  Google Scholar 

  • Smith KF, Acevedo-Whitehouse K, Pedersen AB (2009) The role of infectious diseases in biological conservation. Animal Conservation 12:1-12

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-1786

    Article  CAS  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, et al. (2008) Threatened Amphibians of the World. Barcelona, Spain: Lynx Ed.

    Google Scholar 

  • Team RDC (2009) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences USA 105:11466-11473

    Article  CAS  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868-2883

    Article  Google Scholar 

  • Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19:1449-1459

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ariadne Angulo and Mike Hoffmann of Conservation International for being helpful in making available requested IUCN data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lötters.

Appendices

Appendix 1

See Table 1.

Table 1 List of all amphibian species undergoing rapid enigmatic decline as listed in the GAA with their IUCN Red List status and the geographic range size encompassed by them (www.iucnredlist.org), followed for each species by the portion of its geographic range at the same time suitable to the amphibian chytrid fungus

Appendix 2

Exclusion of one species due to insufficient taxonomic status. Under the GAA, one Atelopus population from the Amazon versant of the Andes in Ecuador was allocated to A. spumarius due to morphological resemblance. However, this Andean population represents an undescribed species and is not conspecific with any of the populations from the Amazon basin and the adjacent Guyana Shield which tentatively have been referred to as A. spumarius (Lötters et al., 2002; Rueda-Almonacid et al., 2005). Although the undescribed species has experienced rapid enigmatic decline, those from the Amazon lowlands or adjacent Guyana region have not (Lötters et al., 2005; Rueda-Almonacid et al., 2005; Luger et al., 2008). Because there is no other amphibian species from this remarkably large area, encompassed by A. spumarius (excluding the undescribed species), which has suffered from rapid decline at all, inclusion of the GAA shapefile for A. spumarius would have misled our study.

Appendix 3

See Figure 3.

Figure 3
figure 3

Worldwide potential distribution of the amphibian chytrid fungus (based on a MaxEnt SDM and six “bioclimate” variables), with higher values indicating higher suitability. The 175 records for this pathogen used for SDM calculation, all located outside areas of rapid enigmatic amphibian decline, are indicated by dots.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötters, S., Kielgast, J., Bielby, J. et al. The Link Between Rapid Enigmatic Amphibian Decline and the Globally Emerging Chytrid Fungus. EcoHealth 6, 358–372 (2009). https://doi.org/10.1007/s10393-010-0281-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-010-0281-6

Keywords

Navigation