Skip to main content
Log in

The Potential Distance of Highly Pathogenic Avian Influenza Virus Dispersal by Mallard, Common Teal and Eurasian Pochard

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Waterbirds represent the major natural reservoir for low pathogenic (LP) avian influenza viruses (AIV). Among the wide diversity of subtypes that have been described, two of them (H5 and H7) may become highly pathogenic (HP) after their introduction into domestic bird populations and cause severe outbreaks, as is the case for HP H5N1 in South-Eastern Asia. Recent experimental studies demonstrated that HP H5N1 AIV infection in ducks does not necessarily have significant pathological effects. These results suggest that wild migratory ducks may asymptomatically carry HP AIV and potentially spread viruses over large geographical distances. In this study, we investigated the potential spreading distance of HP AIV by common teal (Anas crecca), mallard (A. platyrhynchos), and Eurasian pochard (Aythya ferina). Based on capture-mark-recapture method, we characterized their wintering movements from a western Mediterranean wetland (Camargue, South of France) and identified the potential distance and direction of virus dispersal. Such data may be crucial in determining higher-risk areas in the case of HP AIV infection detection in this major wintering quarter, and may serve as a valuable reference for virus outbreaks elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alerstam T (1990) Bird Migration. Cambridge: Cambridge University Press

    Google Scholar 

  • Breban R, Drake JM, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent avian influenza epidemics. PLoS Computational Biology 5:e1000346

    Article  Google Scholar 

  • Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE (2006) Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases 12:1663-1670

    CAS  Google Scholar 

  • Bub H (1991) Bird Trapping and Bird Banding: a Handbook for Trapping Methods all over the World. New York: Cornell University Press

    Google Scholar 

  • Cramp S, Simmons KEL (1977) Handbook of the Birds of Europe the Middle East and North Africa, the Birds of Western Paleartic, Volume 1 Ostrich to Ducks. Oxford: Oxford University Press

    Google Scholar 

  • Crawley MJ (1993) Glim for Ecologists. Oxford: Blackwell Scientific Publications

    Google Scholar 

  • De Marco MA, Foni E, Campitelli L, Raffini E, Delogu M, Donatelli I (2003) Long-term monitoring for avian influenza viruses in wild bird species in Italy. Veterinary Research Communications 27(Suppl 1):107–114

    Article  Google Scholar 

  • Delany S, Scott D (2006) Waterbird Population Estimates, 4th Edition. Wageningen: Wetlands International.

    Google Scholar 

  • Feare CJ (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases 51:440-447

    Article  Google Scholar 

  • Gauthier-Clerc M, Le Maho Y (2001) Beyond bird marking with rings. Ardea 89:221-230

    Google Scholar 

  • Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis 149:202-214

    Article  Google Scholar 

  • Gilbert M, Xiao X, Domenech J, Lubroth J, Martin V, Lubroth J et al (2006) Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5N1 virus. Emerging Infectious Diseases 12:1650-1656

    Google Scholar 

  • Globig A, Staubach C, Beer M, Köppen U, Fiedler W, Nieburg M et al (2009) Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007. Transboundary and Emerging Diseases 56:57-72

    Article  CAS  Google Scholar 

  • Green AJ (1996) Analyses of globally threatened Anatidae in relation to threats, distribution, migration patterns, and habitat use. Conservation Biology 10:1435-1445

    Article  Google Scholar 

  • Guillemain M, Arzel C, Mondain-Monval JY, Schricke V, Johnson AR, Simon G (2006) Spring migration dates of teal Anas crecca ringed in the Camargue, southern France. Wildlife Biology 12:163-169

    Article  Google Scholar 

  • Guillemain M, Fritz H, Klaassen M, Johnson AR, Hafner H (2004) Fuelling rates of Garganey (Anas querquedula) staging in the Camargue, southern France, during spring migration. Journal of Ornithology 145:152-158

    Article  Google Scholar 

  • Guillemain M, Sadoul N, Simon G (2005) European flyway permeability and abmigration in Teal Anas crecca, an analysis based on ringing recoveries. Ibis 147:688-696

    Article  Google Scholar 

  • Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA, Krauss S, et al. (2005) Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proceedings of the National Academy of Sciences of the USA 102:10682–10687

    Google Scholar 

  • Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P (2007) Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerging Infectious Diseases 13:365-372

    Article  Google Scholar 

  • Kayser Y, Gauthier-Clerc M, Béchet A, Poulin B, Massez G, Chérain Y et al (2008) Compte rendu ornithologique camarguais pour les années 2001–2006 [in French]. Revue d’Ecologie (Terre Vie) 63: 299–349

    Google Scholar 

  • Keawcharoen J, van Riel D, van Amerongen G, Besteboer T, Beyer WE, van Lavieren R et al (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza. Emerging Infectious Diseases 14:600-607

    Article  CAS  Google Scholar 

  • Keller I, Korner-Nievergelt F, Jenni L (2009). Within-winter movements: a common phenomenon in the Common Pochard Aythya ferina. Journal of Ornithology 150:483-494

    Article  Google Scholar 

  • Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra P, Daszak P (2006) Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy Sciences of the USA 103:19368–19373

    Google Scholar 

  • Latorre-Margalef N, Gunnarson G, Munster VJ, Fouchier RAM, Osterhaus ADME, Elmberg J, et al. (2009) Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society B 276:1029–1036

    Google Scholar 

  • Lebarbenchon C, Albespy F, Brochet AL, Grandhomme V, Renaud F, Fritz H et al (2009) Spread of avian influenza viruses by Common Teal (Anas crecca) in Europe. PLoS ONE 4:e7289

    Article  Google Scholar 

  • Lebarbenchon C, Chang CM, Grandhomme V, Dietrich M, Kayser Y, Elguero E, et al. (in press) Avian influenza circulation in the Camargue (south of France) during the 2006–2007 season. Avian Diseases

  • Lebarbenchon C, van der Werf S, Thomas F, Aubin JT, Azebi S, Cuvelier F et al (2007) Absence of detection of highly pathogenic H5N1 in migratory waterfowl in southern France in 2005–2006. Infection, Genetics and Evolution 7:604-608

    Article  Google Scholar 

  • Nagy A, Vostinakova V, Pindova Z, Hornickova J, Cernikova L, Sedlak K et al (2009) Molecular and phylogenetic analysis of the H5N1 avian influenza virus caused the first highly pathogenic avian influenza outbreak in poultry in the Czech Republic in 2007. Veterinary Microbiology 133:257-263

    Article  CAS  Google Scholar 

  • Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM (2006) Global patterns of influenza A virus in wild birds. Science 312:384-388

    Article  CAS  Google Scholar 

  • Pradel R, Rioux N, Tamisier A, Lebreton JD (1997) Individual turnover among wintering teal in Camargue: a mark-recapture study. Journal of Wildlife Management 61:816-821

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing—R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org

  • Ridgill SC, Fox AD (1990) Cold weather movements of waterfowl in western Europe. Slimbridge: IWRB Publication 13

  • Roche B, Lebarbenchon C, Gauthier-Clerc M, Chang CM, Thomas F, Renaud F et al (2009) Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005-2006 epidemics in the Camargue area. Infection, Genetics and Evolution 9: 800-805

    Article  Google Scholar 

  • Rodrigues D, Figueiredo ME, Fabiao A, Encarnaçao V (2006) Ducks and the risk of avian influenza in Portugal. Airo 16:69-74

    Google Scholar 

  • Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wageningen: Wetlands International

    Google Scholar 

  • Sturm-Ramirez KM, Hulse-Post DJ, Govorkova EA, Humberd J, Seiler P, Puthavathana P et al (2005) Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia? Journal of Virology 79:11269-11279

    Article  CAS  Google Scholar 

  • Svazas S, Meissner W, Serebryakov V, Kozulin A, Grishanov G (2001) Changes of Wintering Sites of Waterfowl in Central and Eastern Europe. Vilnius: Oiseaux Migrateurs du Paléarctique Occidental “OMPO Vilnius” and Lithuanian Institute of Ecology

  • Tamisier A, Dehorter O (1999) Camargue, Ducks and Coots. Functioning and Gradual Change of a Prestigious Wintering Ground [in French]. Nîmes: Centre Ornithologique du Gard

  • van Gils JA, Munster VJ, Radersma R, Liefhebber D, Fouchier RAM, Klaassen M (2007) Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus. PLoS One 1:e184

    Article  Google Scholar 

  • Weber TP, Stilianakis NI (2007) Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerging Infectious Diseases 13:1139-1143

    Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiological Reviews 56:152-179

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to Luc Hoffmann, Hubert Kowalski, Heinz Hafner, Alan Johnson, and others who ringed ducks at the Tour du Valat for 25 years. We also thank Marc Lutz, Paul Isenmann, and the Centre de Recherche sur la Biologie des Populations d’Oiseaux (Muséum National d’Histoire Naturelle, Paris) for their help computerizing the Tour du Valat ringing database. Two anonymous referees provided useful comments on an earlier version of the manuscript. A.L. Brochet was funded by a Doctoral grant from Office National de la Chasse et de la Faune Sauvage, with additional funding from a research agreement between ONCFS, the Tour du Valat, Laboratoire de Biométrie et de Biologie Evolutive (UMR 5558 CNRS Université Lyon 1) and the Doñana Biological Station (CSIC). Camille Lebarbenchon was supported by a “Région Languedoc-Roussillon – Tour du Valat” PhD grant during this study. This work also received funding from the Agence Nationale de la Recherche through the Santé Environnement - Santé Travail scheme (contract number 2006-SEST-22), the European Union’s Framework Program for Research and Technological Development (FP6) (NEW-FLUBIRD project, contract number FP6-2005-SSP5B Influenza), and from the Agence Interorganisme pour la Recherche et le Développement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Brochet.

Appendix

Appendix

Median distance (D in km) and azimuth (A in decimal degrees) of recoveries for mallard (a), Eurasian pochard (b), and common teal (c), ringed during each month of the winter. Numbers in brackets give minimum and maximum values. Note that sample size (n) may be lower for azimuth than for distance travelled because, when birds were recovered at the ringing site itself, distance = 0 but azimuth could not be computed.

Month

No. of days since ringing

0–10 days

11–20 days

21–30 days

(a)

September

D

11.0 (0.0/19.6), n = 7

14.6 (0.0/,20.7) n = 4

No data

A

−90.0 (−106.4/144.3), n = 5

−51.1 (−51.1/144.0), n = 3

No data

October

D

7.8 (0.0/24.0), n = 8

10.1 (5.5/45.1), n = 3

7.7 (5.5/7.7), n = 3

A

111.5 (−89.9/111.5), n = 5

47.4 (23.5/47.4), n = 3

44.1 (44.0/47.4), n = 3

November

D

0.0 (0.0/20.6), n = 19

8.6 (0.0/30.3), n = 14

0.0 (0.0/18.3), n = 3

A

154.2 (−90.0/154.2), n = 9

−90.0 (−90.0/154.2), n = 11

144.0, n = 1

December

D

3.3 (0.0/225.5), n = 35

2.7 (0.0/134.9), n = 13

3.9 (0.0/153.1), n = 14

A

−90.0 (−137.8/180.0), n = 23

−90.0 (−114.7/−23.5), n = 10

115.0 (-115.3/144), n = 10

January

D

7.9 (0.0/369.5), n = 24

11.0 (0.0/450.7), n = 18

11.1 (0.0/488.4), n = 15

A

−175.9 (−160.0/168.3), n = 18

149.8 (−90.0/149.8), n = 15

149.8 (−106.4/154.2), n = 12

February

D

2.7 (0.0/19.1), n = 7

1.3 (0.0/5.5), n = 6

201.2 (10.7/391.8), n = 2

A

−90.0 (−144.0/39.1), n = 6

−90.0 (−90.0/47.4), n = 4

98.7 (47.6/149.8), n = 2

March

D

2.3 (0.0/644.9), n = 7

No data

No data

A

141.9 (−144.0/67.9), n = 4

No data

No data

(b)

September

D

No data

No data

No data

A

No data

No data

No data

October

D

4.6, n = 1

No data

No data

A

−35.9, n = 1

No data

No data

November

D

16.3 (6.2/20.9), n = 5

16.3 (16.3/16.3), n = 2

382.5, n = 1

A

−55.3 (−105.3/154.2), n = 5

−55.3 (−55.3/−55.3), n = 2

−78.9, n = 1

December

D

9.2 (3.3/74.2), n = 5

2.7 (1.9/252.4), n = 3

4.6, n = 1

A

154.2 (−105.3/154.2), n = 4

2.9 (−90.0/ 2.9), n = 3

−35.9, n = 1

January

D

11.3 (0.0/19.7), n = 6

12.7 (4.6/20.9), n = 4

19.8 (0.0/39.7), n = 2

A

−54.3 (−160.1/−48.6), n = 4

−70.971.1 (−105.3/−35.9), n = 4

−79.1, n = 1

February

D

1.9 (0.0/14.8), n = 5

0.0 n = 1

17.6 (3.3/20.7), n = 3

A

89.9 (-55.4/89.9), n = 3

No data

55.4 (−51.1/55.4), n = 3

March

D

0.7 (0.0/2.7), n = 4

0.9 (0.0/1.9), n = 2, n = 1

6.2, n = 1

A

−90.0, n = 1

No data

−25.8, n = 1

(c)

September

D

11.4 (4.4/18.3), n = 2

32.6 (13.2/51.9), n = 2

268.8 (54.6/483.6), n = 2

A

−165.3 (−114.7/144.0), n = 2

−135.6 (−79.5/168.3), n = 2

−80.3 (−84.6/−75.9), n = 2

October

D

8.3 (0.0/99.1), n = 8

10.9 (2.7/18.6), n = 5

2.7, n = 1

A

−95.7 (−101.5/168.3), n = 6

−90.0 (−90.0/168.3), n = 5

−90.0, n = 1

November

D

2.5 (0.0/26.4), n = 18

165.8 (0.0/1149.1), n = 18

169.3 (2.7/482.9), n = 26

A

−144.0 (−144.0/154.2), n = 11

−92.7 (−104.1/88.1), n = 17

−115.3 (−138.1/173.1), n = 26

December

D

6.7 (0.0/911.0), n = 169

146.3 (0.0/578.5), n = 103

216.1 (0.0/1004.0), n = 71

A

−103.3 (−144/180.0), n = 107

−99.4 (−151.0/171.7), n = 94

−93.7 (−139.2/171.1), n = 68

January

D

24.2 (0.0/807.9), n = 200

171.9 (0.0/940.7), n = 128

252.1 (0.0/894.4), n = 143

A

−117.7 (−160.0/173.1), n = 192

−125.3 (−162.1/173.1), n = 118

161.2 (−141.8/168.3), n = 136

February

D

18.6 (0.0/843.1), n = 155

170.7 (0.0/726.6), n = 57

282.1 (0.0/738.7), n = 53

A

95.5 (−160.0/168.3), n = 139

90.7 (−144.0/168.3), n = 54

73.4 (−160.0/180), n = 51

March

D

22.8 (2.1/711.4), n = 43

416.2 (0.0/1107.1), n = 29

424.9 (2.3/930.7), n = 11

A

75.7 (−144.7/171.7), n = 43

66.4 (−144.0/154.2), n = 28

64.9 (−144.0/173.1), n = 11

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brochet, AL., Guillemain, M., Lebarbenchon, C. et al. The Potential Distance of Highly Pathogenic Avian Influenza Virus Dispersal by Mallard, Common Teal and Eurasian Pochard. EcoHealth 6, 449–457 (2009). https://doi.org/10.1007/s10393-010-0275-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-010-0275-4

Keywords

Navigation