Skip to main content

Advertisement

Log in

PDZK1 induces resistance to apoptosis in esophageal adenocarcinoma cells

  • Original Article
  • Published:
Esophagus Aims and scope Submit manuscript

Abstract

Background

Esophageal cancer is a lethal malignancy with a poor prognosis. The incidence of esophageal adenocarcinoma, which develops from Barrett’s esophagus (BE), has recently been increasing. In a previous study, we found that PDZK1 expression is higher in long segment BE compared to that in short-segment BE. However, the function of PDZK1 in the mucosa of BE is unclear.

Aims

Clarify the role of PDZK1 in BE mucosa using PDZK1 overexpressed cells.

Methods

Human adenocarcinoma-derived OE33 cells were used as a parental cell line and transfected to generate PDZK1 overexpressed OE33 cells (PC cells) or transfected with empty vector as control cells (NC cells). Cell growth of NC and PC cells in 10% fetal bovine serum was evaluated by cell counting. The effect of PDZK1 on proteasome inhibitor (PSI)-induced apoptosis was qualified by fluorescence microscopy and quantified by flow cytometry. Expression of apoptosis-related proteins was evaluated by western blotting.

Results

There were no significant differences in cell growth between NC and PC cells. PSI significantly increased apoptosis in NC cells, but not in PC cells. In response to PSI, increased levels of cleaved-caspase3 and decreased pro-caspase3 levels were found in NC cells, but not in PC cells. In NC cells, PSI significantly decreased Bcl-2 expression without affecting Bax levels. In contrast, high expression of both Bcl-2 and Bax was observed in PC cells.

Conclusion

Overexpression of PDZK1 protein induces an apoptosis-resistant phenotype in BE cells, which may be a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Malhotra GK, Yanala U, Ravipati A, Follet M, Vijayakumar M, Are C. Global trends in esophageal cancer. J Surg Oncol. 2017;115(5):564–79. https://doi.org/10.1002/jso.24592.

    Article  PubMed  Google Scholar 

  2. Lagergren J, Lagergren P. Recent developments in esophageal adenocarcinoma. CA Cancer J Clin. 2013;63(4):232–48. https://doi.org/10.3322/caac.21185.

    Article  PubMed  Google Scholar 

  3. Wong MCS, Hamilton W, Whiteman DC, Jiang JY, Qiao Y, Fung FDH, et al. Global Incidence and mortality of oesophageal cancer and their correlation with socioeconomic indicators temporal patterns and trends in 41 countries. Sci Rep. 2018;8(1):4522. https://doi.org/10.1038/s41598-018-19819-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koizumi S, Motoyama S, Iijima K. Is the incidence of esophageal adenocarcinoma increasing in Japan? Trends from the data of a hospital-based registration system in Akita Prefecture. Japan J Gastroenterol. 2018;53(7):827–33. https://doi.org/10.1007/s00535-017-1412-4.

    Article  PubMed  Google Scholar 

  5. Runge TM, Abrams JA, Shaheen NJ. Epidemiology of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am. 2015;44(2):203–31. https://doi.org/10.1016/j.gtc.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pohl H, Pech O, Arash H, Stolte M, Manner H, May A, et al. Length of Barrett’s oesophagus and cancer risk: implications from a large sample of patients with early oesophageal adenocarcinoma. Gut. 2016;65(2):196–201. https://doi.org/10.1136/gutjnl-2015-309220.

    Article  PubMed  Google Scholar 

  7. Goda K, Murao T, Handa Y, Katsumata R, Fukushima S, Nakato R, et al. Molecular biomarker identification for esophageal adenocarcinoma using endoscopic brushing and magnified endoscopy. Esophagus. 2020. https://doi.org/10.1007/s10388-020-00762-5.

    Article  PubMed  Google Scholar 

  8. Yao W, Feng D, Bian W, Yang L, Li Y, Yang Z, et al. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation. Amino Acids. 2012;43(5):2027–35. https://doi.org/10.1007/s00726-012-1277-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kocher O, Comella N, Tognazzi K, Brown LF. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Invest. 1998;78(1):117–25.

    CAS  PubMed  Google Scholar 

  10. Zheng J, Wang L, Peng Z, Yang Y, Feng D, He J. Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma. EBioMedicine. 2017;15:62–72. https://doi.org/10.1016/j.ebiom.2016.12.003.

    Article  PubMed  Google Scholar 

  11. Kocher O, Yesilaltay A, Cirovic C, Pal R, Rigotti A, Krieger M. Targeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism. J Biol Chem. 2003;278(52):52820–5. https://doi.org/10.1074/jbc.M310482200.

    Article  CAS  PubMed  Google Scholar 

  12. Togashi Y, Arao T, Kato H, Matsumoto K, Terashima M, Hayashi H, et al. Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production. Oncotarget. 2014;5(10):2962–73. https://doi.org/10.18632/oncotarget.1561.

    Article  PubMed  Google Scholar 

  13. Rockett JC, Larkin K, Darnton SJ, Morris AG, Matthews HR. Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization. Br J Cancer. 1997;75(2):258–63. https://doi.org/10.1038/bjc.1997.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naito Y, Handa O, Takagi T, Ishikawa T, Imamoto E, Nakagawa S, et al. Ubiquitin-proteasome inhibitor enhances tumour necrosis factor-alpha-induced apoptosis in rat gastric epithelial cells. Aliment Pharmacol Ther. 2002;16(Suppl 2):59–66. https://doi.org/10.1046/j.1365-2036.16.s2.30.x.

    Article  CAS  PubMed  Google Scholar 

  15. Handa O, Kokura S, Adachi S, Takagi T, Naito Y, Tanigawa T, et al. Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology. 2006;227(1–2):62–72. https://doi.org/10.1016/j.tox.2006.07.018.

    Article  CAS  PubMed  Google Scholar 

  16. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31(1):1–9. https://doi.org/10.1002/(sici)1097-0320(19980101)31:1%3c1::aid-cyto1%3e3.0.co;2-r.

    Article  PubMed  Google Scholar 

  17. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990;265(9):4923–8.

    Article  CAS  Google Scholar 

  18. Sugiura T, Shimizu T, Kijima A, Minakata S, Kato Y. PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci. 2011;100(9):3620–35. https://doi.org/10.1002/jps.22575.

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira C, Meyer R, Meyer Zu, Schwabedissen HE. The nuclear receptors PXR and LXR are regulators of the scaffold protein PDZK1. Biochim Biophys Acta Gene Regul Mech. 2019;1862(4):447–56. https://doi.org/10.1016/j.bbagrm.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  20. Trigatti BL. SR-B1 and PDZK1: partners in HDL regulation. Curr Opin Lipidol. 2017;28(2):201–8. https://doi.org/10.1097/MOL.0000000000000396.

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira C, Hagen P, Stern M, Hussner J, Zimmermann U, Grube M, et al. The scaffold protein PDZK1 modulates expression and function of the organic anion transporting polypeptide 2B1. Eur J Pharm Sci. 2018;120:181–90. https://doi.org/10.1016/j.ejps.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  22. Tao T, Yang X, Zheng J, Feng D, Qin Q, Shi X, et al. PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation. Oncogene. 2017;36(44):6119–31. https://doi.org/10.1038/onc.2017.199.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao C, Tao T, Yang L, Qin Q, Wang Y, Liu H, et al. Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer. Cancer Lett. 2019;453:107–21. https://doi.org/10.1016/j.canlet.2019.03.043.

    Article  CAS  PubMed  Google Scholar 

  24. Kim H, Abd Elmageed ZY, Davis C, El-Bahrawy AH, Naura AS, Ekaidi I, et al. Correlation between PDZK1, Cdc37, Akt and breast cancer malignancy: the role of PDZK1 in cell growth through Akt stabilization by increasing and interacting with Cdc37. Mol Med. 2014;20:270–9. https://doi.org/10.2119/molmed.2013.00166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim H, Abd Elmageed ZY, Ju J, Naura AS, Abdel-Mageed AB, Varughese S, et al. PDZK1 is a novel factor in breast cancer that is indirectly regulated by estrogen through IGF-1R and promotes estrogen-mediated growth. Mol Med. 2013;19:253–62. https://doi.org/10.2119/molmed.2011.00001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S, et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol. 2004;165(1):71–81. https://doi.org/10.1016/S0002-9440(10)63276-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis CJ, Thrumurthy SG, Pritchard S, Armstrong G, Attwood SE. Comparison of COX-2, Ki-67, and BCL-2 expression in normal esophageal mucosa, Barrett’s esophagus, dysplasia, and adenocarcinoma with postablation mucosa and implications for ablative therapies. Surg Endosc. 2011;25(8):2564–9. https://doi.org/10.1007/s00464-011-1587-3.

    Article  PubMed  Google Scholar 

  28. Cardin R, Piciocchi M, Tieppo C, Maddalo G, Zaninotto G, Mescoli C, et al. Oxidative DNA damage in Barrett mucosa: correlation with telomeric dysfunction and p53 mutation. Ann Surg Oncol. 2013;20(Suppl 3):S583–9. https://doi.org/10.1245/s10434-013-3043-1.

    Article  PubMed  Google Scholar 

  29. Mardones P, Pilon A, Bouly M, Duran D, Nishimoto T, Arai H, et al. Fibrates down-regulate hepatic scavenger receptor class B type I protein expression in mice. J Biol Chem. 2003;278(10):7884–90. https://doi.org/10.1074/jbc.M211627200.

    Article  CAS  PubMed  Google Scholar 

  30. Feagins LA, Zhang HY, Hormi-Carver K, Quinones MH, Thomas D, Zhang X, et al. Acid has antiproliferative effects in nonneoplastic Barrett’s epithelial cells. Am J Gastroenterol. 2007;102(1):10–20. https://doi.org/10.1111/j.1572-0241.2006.01005.x.

    Article  CAS  PubMed  Google Scholar 

  31. Avissar NE, Toia L, Hu Y, Watson TJ, Jones C, Raymond DP, et al. Bile acid alone, or in combination with acid, induces CDX2 expression through activation of the epidermal growth factor receptor (EGFR). J Gastrointest Surg. 2009;13(2):212–22. https://doi.org/10.1007/s11605-008-0720-7.

    Article  PubMed  Google Scholar 

  32. Bus P, Siersema PD, van Baal JW. Cell culture models for studying the development of Barrett’s esophagus: a systematic review. Cell Oncol (Dordr). 2012;35(3):149–61. https://doi.org/10.1007/s13402-012-0076-6.

    Article  CAS  Google Scholar 

  33. Souza RF. From reflux esophagitis to esophageal adenocarcinoma. Dig Dis. 2016;34(5):483–90. https://doi.org/10.1159/000445225.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express sincere appreciation to Ms. Kimiko Hagihara, B.N.S, for her technical support. We would also like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported by JSPS KAKENHI (C) Grant Number JP (17K09364) to TM.

Author information

Authors and Affiliations

Authors

Contributions

OH, AS, and KG contributed substantially to the conception or design of the work and the acquisition, analysis and interpretation of the data. KG, YH, SF, MO, TM, and HM collected data in this study. OH drafted the manuscript and AS, EU, YF, and KN critically revised it for important intellectual content. All authors approved the final version to be published and agreed to be accountable for all aspects of the work, including to ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Osamu Handa.

Ethics declarations

Ethical statement

None.

Conflict of interest

The all authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, O., Goda, K., Handa, Y. et al. PDZK1 induces resistance to apoptosis in esophageal adenocarcinoma cells. Esophagus 18, 655–662 (2021). https://doi.org/10.1007/s10388-021-00819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10388-021-00819-z

Keywords

Navigation