Skip to main content

Advertisement

Log in

Preoperative staging of clinically node-negative esophageal cancer by the combination of 18F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG–PET/CT)

  • Original Article
  • Published:
Esophagus Aims and scope Submit manuscript

Abstract

Background

Although lymph node metastasis is a significant prognostic factor in patients with esophageal cancer, the sensitivity and specificity of conventional imaging modalities such as computed tomography (CT) and magnetic resonance imaging is limited in the diagnosis of lymph node metastasis. This retrospective study examined the usefulness of the combination of 18F-fluorodeoxyglucose-positron emission tomography (PET)/CT in the diagnosis of subclinical lymph node metastasis from esophageal cancer.

Methods

We compared the postoperative pathological findings and preoperative PET/CT findings in 81 consecutive clinically node-negative esophageal cancer patients who underwent esophagectomy with lymphadenectomy. All patients had resectable tumor (T1–T3) and were node-negative based on preoperative conventional examinations.

Results

Of the 81 patients, 37 had pathological node metastasis in surgical specimens. A PET/CT diagnosis of node metastasis was made using several cut-off values of the maximum standardized uptake value (SUVmax). The sensitivity, specificity, and accuracy of PET/CT diagnosis were 32.4, 70.4, and 53.1 % at an SUVmax cut-off value of 1.8; 29.7 %, 79.5 %, and 56.8 % at 2.0; 21.6 %, 90.9 %, and 59.3 % at 2.5; 16.2 %, 95.4 %, and 59.3 % at 3.0; and 10.8 %, 97.7 %, and 56.8 % at 3.5, respectively. When an SUVmax cut-off value of 1.8 was employed, the disease-free survival rate was significantly worse in PET/CT-node-positive patients (PET-N(+)) than in PET-N(−) patients. Next, the effect of PET-N status on the prognosis was analyzed in pN(−)and pN(+) patients separately. Among the 44 pN(−) patients, PET-N status did not significantly affect the disease-free survival (p = 0.879). In contrast, in the 37 pN(+) patients, DFS was significantly better in PET-N(−) patients than in PET-N(+) patients (p = 0.002).

Conclusions

The diagnostic sensitivity of PET/CT for subclinical lymph node metastasis in clinically node-negative patients is low, but this combined modality can potentially identify patients with poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akiyama H, Tsurumaru M, Udagawa H, Kajiyama Y. Radical lymph node dissection for cancer of the thoracic esophagus. Ann Surg. 1994;220:364–73.

    Article  PubMed  CAS  Google Scholar 

  2. Isono K, Sato H, Nakayama K. Results of a nationwide study on the three-field lymph node dissection of esophageal cancer. Oncology. 1991;48:411–20.

    Article  PubMed  CAS  Google Scholar 

  3. The Registration Committee for Esophageal Cancer of JSDE. Comprehensive Registry of Esophageal Cancer in Japan (1995, 1996, 1997). 2nd ed. Tokyo: The Japanese Society for Esophageal Diseases; 2001.

  4. Funai T, Osugi H, Higashino M, Kinoshita H. Estimation of lymph node metastasis by size in patients with intrathoracic oesophageal cancer. Br J Surg. 2000;87:1234–9.

    Article  PubMed  CAS  Google Scholar 

  5. Stiles BM, Mirza F, Coppolino A, Port JL, Lee PC, Paul S, et al. Clinical T2–T3N0M0 esophageal cancer: the risk of node positive disease. Ann Thorac Surg. 2011;92:491–6.

    Article  PubMed  Google Scholar 

  6. Zhang JQ, Hooker CM, Brock MV, Shin J, Lee S, How R, et al. Neoadjuvant chemoradiation therapy is beneficial for clinical stage T2 N0 esophageal cancer patients due to inaccurate preoperative staging. Ann Thorac Surg. 2012;93:429–35.

    Article  PubMed  Google Scholar 

  7. Luketich JD, Schauer PR, Meltzer CC, Landreneau RJ, Urso GK, Townsend DW, et al. Role of positron emission tomography in staging esophageal cancer. Ann Thorac Surg. 1997;64:765–9.

    Article  PubMed  CAS  Google Scholar 

  8. Flanagan FL, Dehdashti F, Siegel BA, Trask DD, Sundaresan SR, Patterson GA, et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. Am J Roentgenol. 1997;168:417–24.

    CAS  Google Scholar 

  9. Flamen P, Lerut A, Van Custem E, De Wever W, Peeters M, Stroobants S, et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol. 2000;18:3202–10.

    PubMed  CAS  Google Scholar 

  10. Brucher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg. 2001;233:300–9.

    Article  PubMed  CAS  Google Scholar 

  11. Flamen P, Van Cutsem E, Lerut A, Cambier JP, Haustermans K, Bormans G, et al. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol. 2002;13:361–8.

    Article  PubMed  CAS  Google Scholar 

  12. Higuchi I, Yasuda T, Yano M, Doki Y, Miyata H, Tatsumi M, et al. Lack of fludeoxyglucose F 18 uptake in posttreatment positron emission tomography as a significant predictor of survival after subsequent surgery in multimodality treatment for patients with locally advanced esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg. 2008;136:205–12.

    Article  PubMed  Google Scholar 

  13. Yoon YC, Lee KS, Shim YM, Kim BT, Kim K, Kim TS. Metastasis to regional lymph nodes in patients with esophageal squamous cell carcinoma: CT versus FDG PET for presurgical detection-prospective study. Radiology. 2003;227:764–70.

    Article  PubMed  Google Scholar 

  14. Yuan S, Yu Y, Chao KS, Fu Z, Yin Y, Liu T, et al. Additional value of PET/CT over PET in assessment of locoregional lymph nodes in thoracic esophageal squamous cell cancer. J Nucl Med. 2006;47:1255–9.

    PubMed  Google Scholar 

  15. American Joint Committee on Cancer. Esophagus. In: Beahrs OH, Henson DE, Hutter RV, Kennedy BJ, editors. Manual of staging of cancer. 4th ed. Philadelphia: JB Lippincott; 1993. p. 75–9.

  16. Ishihara R, Yamamoto S, Iishi H, Nagai K, Matui F, Kawada N, et al. Predicting the effects of chemoradiotherapy for squamous cell carcinoma of the esophagus by induction chemotherapy response assessed by positron emission tomography: toward PET-response-guided selection of chemoradiotherapy or esophagectomy. Int J Clin Oncol. 2012;17:225–32.

    Google Scholar 

  17. Japanese Society for Esophageal Diseases. Guidelines for the clinical and pathological studies on carcinoma of the esophagus. 10th ed. Tokyo: Kanehara; 2007.

  18. Yasuda S, Raja S, Hubner KF. Application of whole-body positron emission tomography in the imaging of esophageal cancer: report of a case. Surg Today. 1995;25:261–4.

    Article  PubMed  CAS  Google Scholar 

  19. Rasanen JV, Sihvo EI, Knuuti MJ, Minn HR, Luostarinen ME, Laippala P, et al. Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol. 2003;10:954–60.

    Article  PubMed  Google Scholar 

  20. Katsoulis IE, Wong WL, Mattheou AK, Damani N, Chambers J, Livingstone JI. Fluorine-18 fluorodeoxyglucose positron emission tomography in the preoperative staging of thoracic oesophageal and gastro-oesophageal junction cancer: a prospective study. Int J Surg. 2007;5:399–403.

    Article  PubMed  CAS  Google Scholar 

  21. van Westreenen HL, Westerterp M, Bossuyt PM, Pruim J, Sloof GW, van Lanschot JJ, et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol. 2004;22:3805–12.

    Article  PubMed  Google Scholar 

  22. Moureau-Zabotto L, Touboul E, Lerouge D, Deniaud-Alexandre E, Grahek D, Foulquier JN, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;63:340–5.

    Article  PubMed  Google Scholar 

  23. Gondi V, Bradley K, Mehta M, Howard A, Khuntia D, Ritter M, et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;67:187–95.

    Article  PubMed  Google Scholar 

  24. Shimizu S, Hosokawa M, Itoh K, Fujita M, Takahashi H, Shirato H. Can hybrid FDG-PET/CT detect subclinical lymph node metastasis of esophageal cancer appropriately and contribute to radiation treatment planning? A comparison of image-based and pathological findings. Int J Clin Oncol. 2009;14:421–5.

    Article  PubMed  Google Scholar 

  25. Rizk N, Downey RJ, Akhurst T, Gonen M, Bains MS, Larson S, et al. Preoperative 18[F]-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg. 2006;81:1076–81.

    Article  PubMed  Google Scholar 

  26. Cerfolio RJ, Bryant AS. Maximum standardized uptake values on positron emission tomography of esophageal cancer predicts stage, tumor biology, and survival. Ann Thorac Surg. 2006;82:391–4.

    Article  PubMed  Google Scholar 

  27. Choi JY, Jang HJ, Shim YM, Kim K, Lee KS, Lee KH, et al. 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: prognostic implications. J Nucl Med. 2004;45:1843–50.

    PubMed  Google Scholar 

  28. Kato H, Nakajima M, Sohda M, Tanaka N, Inose T, Miyazaki T, et al. The clinical application of (18)F-fluorodeoxyglucose positron emission tomography to predict survival in patients with operable esophageal cancer. Cancer. 2009;115:3196–203.

    Article  PubMed  Google Scholar 

  29. Yasuda T, Higuchi I, Yano M, Miyata H, Yamasaki M, Takiguchi S, et al. The impact of (18)F-fluorodeoxyglucose positron emission tomography positive lymph nodes on postoperative recurrence and survival in resectable thoracic esophageal squamous cell carcinoma. Ann Surg Oncol. 2011;19:652–60.

    Article  PubMed  Google Scholar 

  30. Tanabe S, Naomoto Y, Shirakawa Y, Fujiwara Y, Sakurama K, Noma K, et al. F-18 FDG PET/CT contributes to more accurate detection of lymph nodal metastasis from actively proliferating esophageal squamous cell carcinoma. Clin Nucl Med. 2011;36:854–9.

    Article  PubMed  Google Scholar 

  31. Dhar DK, Tachibana M, Kinukawa N, Riruke M, Kohno H, Little AG, et al. The prognostic significance of lymph node size in patients with squamous esophageal cancer. Ann Surg Oncol. 2002;9:1010–6.

    Article  PubMed  Google Scholar 

  32. Dhar DK, Hattori S, Tonomoto Y, Shimoda T, Kato H, Tachibana M, et al. Appraisal of a revised lymph node classification system for esophageal squamous cell cancer. Ann Thorac Surg. 2007;83:1265–72.

    Article  PubMed  Google Scholar 

  33. Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83:34–40.

    Article  PubMed  CAS  Google Scholar 

  34. Kawamura T, Kusakabe T, Sugino T, Watanabe K, Fukuda T, Nashimoto A, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. 2001;92:634–41.

    Article  PubMed  CAS  Google Scholar 

  35. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 2003;97:1015–24.

    Article  PubMed  CAS  Google Scholar 

  36. Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6:3837–44.

    PubMed  CAS  Google Scholar 

  37. Jacob R, Welkoborsky HJ, Mann WJ, Jauch M, Amedee R. [Fluorine-18]fluorodeoxyglucose positron emission tomography, DNA ploidy and growth fraction in squamous-cell carcinomas of the head and neck. ORL J Otorhinolaryngol Relat Spec. 2001;63:307–13.

    Article  PubMed  CAS  Google Scholar 

  38. Papajík T, Mysliveček M, Sedová Z, Buriánková E, Procházka V, Koranda P, et al. Standardised uptake value of 18F-FDG on staging PET/CT in newly diagnosed patients with different subtypes of non-Hodgkin’s lymphoma. Eur J Haematol. 2011;86:32–7.

    Article  PubMed  Google Scholar 

  39. Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Willis S, et al. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med. 2008;49:1238–44.

    Article  PubMed  CAS  Google Scholar 

  40. Kaira K, Oriuchi N, Sunaga N, Ishizuka T, Shimizu K, Yamamoto N. A systemic review of PET and biology in lung cancer. Am J Transl Res. 2011;3:383–91.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no financial disclosure or commercial sponsorship and declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Yano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, M., Motoori, M., Tanaka, K. et al. Preoperative staging of clinically node-negative esophageal cancer by the combination of 18F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG–PET/CT). Esophagus 9, 210–216 (2012). https://doi.org/10.1007/s10388-012-0342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10388-012-0342-8

Keywords

Navigation