Skip to main content

Advertisement

Log in

Relationships between the vascular structure and neural function of the macula in patients with diabetes mellitus

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the significance of the correlation between the vascular structure and neural function of the macula in patients with diabetes mellitus.

Study design

Single-center observational study.

Patients and methods

Ninety eyes of 90 diabetic patients with an average (SD) age of 63.5 (3.8) years were studied. Fifty of the eyes had no clinically apparent diabetic retinopathy (non-DR), and 40 eyes had mild-to-moderate nonproliferative DR (NPDR). Thirty age-matched healthy individuals were also studied in the same way. Swept-source optical coherence tomography angiography (OCTA) was performed to obtain 3 × 3-mm en face images of the posterior pole of the eye. The vascular densities (VDs) of the superficial capillary plexus (SCP) and the deep capillary plexus (DCP) were determined. The focal macular electroretinograms (ERGs) elicited by a 15° circular stimulus centered on the fovea were recorded. The amplitudes of the a- and b-waves, sum of the oscillatory potentials (ΣOPs), photopic negative response (PhNR), and implicit times of the individual OPs (OP1-OP3) were measured.

Results

The VDs of the SCP and DCP were reduced in eyes with advanced DR (P < .01 for SCP). The implicit times of OP1-OP3 were significantly prolonged in eyes with a lower VD of the SCP and DCP in the non-DR group (P < .05). The amplitudes of the ΣOPs were significantly smaller in eyes with a reduced VD of the SCP and DCP in the NPDR group (P < .05). The correlation coefficients were higher for the OP implicit times than for the ΣOP amplitudes in the non-DR group.

Conclusions

The OPs of the focal macular ERG are smaller with prolonged implicit times in association with capillary loss in the macula of diabetic patients. The implicit times are the most sensitive functional parameter that reflects the early changes of the microvasculature in the macula caused by diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012.

    Article  Google Scholar 

  2. Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1962;68:19–24.

    Article  CAS  Google Scholar 

  3. Shirao Y, Kawasaki K. Electrical responses from diabetic retina. Prog Retin Eye Res. 1998;17:59–76.

    Article  CAS  Google Scholar 

  4. Yonemura D, Tsuzuki K, Aoki T. Clinical importance of the oscillatory potential in the human ERG. Acta Ophthalmol. 1962;Suppl 70:115–23.

    CAS  Google Scholar 

  5. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17:485–521.

    Article  CAS  Google Scholar 

  6. Kawasaki K. Preretinopathic changes in the oscillatory potential in diabetic retina: interpretation and significance. Article in Japanese. Nippon Ganka Gakkai Zasshi. 1998;102:813–36.

    CAS  PubMed  Google Scholar 

  7. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  Google Scholar 

  8. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35:2377–83.

    Article  Google Scholar 

  9. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44.

    Article  Google Scholar 

  10. Salz DA, de Carlo TE, Adhi M, Moult E, Choi W, Baumal CR, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol. 2016;34:644–50.

    Article  Google Scholar 

  11. Couturier A, Rey P-A, Erginay A, Lavia C, Bonnin S, Dupas B, et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology. 2019;126:1685–94.

    Article  Google Scholar 

  12. Miyake Y, Yanagida K, Kondo K, Ota I. Subjective scotometry and recording of local electroretinogram and visual evoked response: system with television monitor of the fundus. Jpn J Ophthalmol. 1981;25:439–48.

    Google Scholar 

  13. Miyake Y. Studies on local macular ERG. Acta Soc Ophthalmol Jpn. 1988;92:1419–49.

    CAS  Google Scholar 

  14. Miyake Y. Macular oscillatory potentials in humans: macular OPs. Doc Ophthalmol. 1990;75:111–24.

    Article  CAS  Google Scholar 

  15. Miyake Y, Shiroyama N, Horiguchi M, Ota I. Asymmetry of focal ERG in human macular region. Invest Ophthalmol Vis Sci. 1989;30:1743–9.

    CAS  PubMed  Google Scholar 

  16. Yoon IH, Shiroyama N, Miyake Y, Awaya S. Oscillatory potentials of local macular ERG in diabetic retinopathy. Korean J Ophthalmol. 1990;4:40–5.

    Article  CAS  Google Scholar 

  17. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.

    Article  CAS  Google Scholar 

  18. Sawada O, Ichiyama Y, Obata S, Ito Y, Kakinoki M, Sawada T, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256:1275–80.

    Article  Google Scholar 

  19. Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T, Sadda S. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol. 2018;102:1199–203.

    Article  Google Scholar 

  20. Zeng Y, Cao D, Yu H, Yang D, Zhuang X, Hu Y, et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br J Ophthalmol. 2019;103:1747–52.

    PubMed  Google Scholar 

  21. Zeng Y, Cao D, Yang D, Zhuang X, Hu Y, He M, et al. Retinal vasculature-function correlation in non-proliferative diabetic retinopathy. Doc Ophthalmol. 2020;140:129–38.

    Article  Google Scholar 

  22. Kondo M, Sieving PA. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs. Invest Ophthalmol Vis Sci. 2001;42:305–12.

    CAS  PubMed  Google Scholar 

  23. Kondo M, Sieving PA. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli. Invest Ophthalmol Vis Sci. 2002;43:2500–7.

    PubMed  Google Scholar 

  24. Park JC, Chen YF, Liu M, Liu K, McAnany JJ. Structural and functional abnormalities in early-stage diabetic retinopathy. Curr Eye Res. 2020. https://doi.org/10.1080/02713683.

    Article  PubMed  Google Scholar 

  25. Vujosevic S, Muraca A, Gatti V, Masoero L, Brambilla M, Cannillo B, et al. Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study. Invest Ophthalmol Vis Sci. 2018;59:5074–81.

    Article  Google Scholar 

  26. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1124–36.

    CAS  PubMed  Google Scholar 

  27. Viswanathan S, Frishman LJ, Robson JG, Walter JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42:514–22.

    CAS  PubMed  Google Scholar 

  28. Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol. 2004;122:341–6.

    Article  Google Scholar 

  29. Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:2201–7.

    Article  Google Scholar 

  30. Machida S. Clinical application of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol. 2012. https://doi.org/10.1155/397178.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kondo M, Kurimoto Y, Sakai T, Koyasu T, Miyata K, Ueno S, et al. Recording focal macular photopic negative response (PhNR) from monkeys. Invest Ophthalmol Vis Sci. 2008;49:3544–50.

    Article  Google Scholar 

  32. Machida S, Toba Y, Ohtaki A, Gotoh Y, Kaneko M, Kurosaka D. Photopic negative response of focal electoretinograms in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:5636–44.

    Article  Google Scholar 

  33. Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D. Sensitivity and specificity of photopic negative response of focal electroretinogram to detect glaucomatous eyes. Br J Ophthalmol. 2010;94:202–8.

    Article  CAS  Google Scholar 

  34. Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of full-field and focal electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol. 2009;53:608–14.

    Article  Google Scholar 

  35. Tamada K, Machida S, Oikawa T, Miyamoto H, Nishimura T, Kurosaka D. Correlation between photopic negative response of focal electroretinograms and local loss of retinal neurons in glaucoma. Curr Eye Res. 2010;35:155–64.

    Article  Google Scholar 

  36. Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol. 2006;50:367–73.

    Article  Google Scholar 

  37. Siliprandi R, Canella R, Carmignoto G, Schiavo N, Zanellato A, Zanoni R, et al. N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci. 1992;8:567–73.

    Article  CAS  Google Scholar 

  38. Spix NJ, Liu LL, Zhang Z, Hohlbein JP, Prigge CL, Chintala S, et al. Vulnerability of dopaminergic amacrine cells to chronic ischemia in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2016;57:3047–57.

    Article  CAS  Google Scholar 

  39. Luu CD, Szental JA, Lee S, Lavanya R, Wong TY. Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51:482–6.

    Article  Google Scholar 

Download references

Funding

This research was supported by Japan Society for the Promotion of Science (Grant 18K09420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Machida.

Ethics declarations

Conflicts of interest

S. Ebihara, None; S. Machida, None; Y. Hara, None; A. Tada, None; M. Ishizuka, None; M. Gonmori, None; T. Nishimura, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Shigeki Machida

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebihara, S., Machida, S., Hara, Y. et al. Relationships between the vascular structure and neural function of the macula in patients with diabetes mellitus. Jpn J Ophthalmol 65, 77–88 (2021). https://doi.org/10.1007/s10384-020-00784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00784-7

Keywords

Navigation