Skip to main content

Advertisement

Log in

Effectiveness and limitations of minimally invasive glaucoma surgery targeting Schlemm’s canal

  • Forefront Review
  • Organizer: Makoto Aihara, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Glaucoma surgery is performed to lower intraocular pressure (IOP); ideally, the IOP reduction is safely maintained for an extended period of time. Although trabeculectomy was considered the gold standard for glaucoma surgery for many years because of its effective IOP reduction, yet now it is considered unsafe because of serious complications. In recent years, minimally invasive glaucoma surgery (MIGS), which emphasizes safety and can be performed rapidly, has become widespread. Because MIGS does not involve conjunctival incisions, patients can undergo future trabeculectomy. If IOP reduction can be maintained safely, the number of anti-glaucoma drops can be reduced and visual function maintained, good outcomes for patients with glaucoma. Currently, many types of MIGS approved in Japan are reported to yield relatively good results, with targets of approximately 15–19 mmHg. However, the IOP-lowering effects of MIGS are limited. In procedures targeting Schlemm's canal, it is difficult to lower IOP beyond episcleral venous pressure. In some instances, a beneficial effect cannot be achieved if function is reduced beyond the collector channel. There are many unclear aspects regarding long-term outcomes following MIGS. Notably, investigation is ongoing to determine which patients are likely to benefit most from surgery. Based on previous reports, this review describes the characteristics and results of MIGS, approved in Japan, as well as underlying factors that affect the preoperative predictions and outcomes of the surgical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    PubMed  Google Scholar 

  3. Chauhan BC, Mikelberg FS, Balaszi AG, LeBlanc RP, Lesk MR, Trope GE, et al. Canadian glaucoma study: 2 risk factors for the progression of open-angle glaucoma. Arch Ophthalmol. 2008;126:1030–6.

    PubMed  Google Scholar 

  4. Actis AG, Versino E, Brogliatti B, Rolle T. Risk factors for primary open angle glaucoma (POAG) progression: a study ruled in Torino. Open Ophthalmol J. 2016;10:129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130:429–40.

    Google Scholar 

  6. Heijl A, Leske MC, Bengtsson B, Hyman L, Group EMGT. Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–79.

    PubMed  Google Scholar 

  7. Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL, et al. Treatment outcomes in the tube versus trabeculectomy (TVT) study after 5 years of follow-up. Am J Ophthalmol. 2012;153(789–803):e2.

    Google Scholar 

  8. Gedde SJ, Singh K, Schiffman JC, Feuer WJ, Group TVTS. The tube versus trabeculectomy study: interpretation of results and application to clinical practice. Curr Opin Ophthalmol. 2012;23:118–26.

    PubMed  Google Scholar 

  9. Gedde SJ, Herndon LW, Brandt JD, Budenz DL, Feuer WJ, Schiffman JC, et al. Postoperative complications in the tube versus trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol. 2012;153(804–14):e1.

    Google Scholar 

  10. Iwasaki K, Arimura S, Takamura Y, Inatani M. Clinical practice preferences for glaucoma surgery in Japan: a survey of Japan Glaucoma Society specialists [published online ahead of print, 2020 May 30]. Jpn J Ophthalmol. 2020;10.1007/s10384-020-00749-w.

  11. Tanihara H, Negi A, Akimoto M, Terauchi H, Okudaira A, Kozaki J, et al. Surgical effects of trabeculotomy ab externo on adult eyes with primary open angle glaucoma and pseudoexfoliation syndrome. Arch Ophthalmol. 1993;111:1653–61.

    CAS  PubMed  Google Scholar 

  12. Chihara E, Nishida A, Kodo M, Yoshimura N, Matsumura M, Yamamoto M, et al. Trabeculotomy ab externo: an alternative treatment in adult patients with primary open-angle glaucoma. Ophthalmic Surg. 1993;24:735–9.

    CAS  PubMed  Google Scholar 

  13. Honjo M, Tanihara H, Negi A, Hangai M, Taniguchi T, Honda Y, et al. Trabeculotomy ab externo, cataract extraction, and intraocular lens implantation: preliminary report. J Cataract Refract Surg. 1996;22:601–6.

    CAS  PubMed  Google Scholar 

  14. Iwao K, Inatani M, Tanihara H. Success rates of trabeculotomy for steroid-induced glaucoma: a comparative, multicenter, retrospective cohort study. Am J Ophthalmol. 2011;151(1047–56):e1.

    Google Scholar 

  15. Skuta GL, Parrish RK. Wound healing in glaucoma filtering surgery. Surv Ophthalmol. 1987;32:149–70.

    CAS  PubMed  Google Scholar 

  16. Crook RB, Riese K. Beta-adrenergic stimulation of Na+, K+, Cl- cotransport in fetal nonpigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci. 1996;37:1047–57.

    CAS  PubMed  Google Scholar 

  17. Orzalesi N, Rossetti L, Invernizzi T, Bottoli A, Autelitano A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension(1). Am J Ophthalmol. 2000;130:687.

    CAS  PubMed  Google Scholar 

  18. Toris CB, Gabelt BT, Kaufman PL. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv Ophthalmol. 2008;53(Suppl 1):S107–20.

    PubMed  PubMed Central  Google Scholar 

  19. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S, Group L-PGS. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151:671–81.

    CAS  PubMed  Google Scholar 

  20. Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M. Intraocular pressure-lowering effects and safety of topical administration of a selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol. 2008;126:309–15.

    CAS  PubMed  Google Scholar 

  21. Kirihara T, Taniguchi T, Yamamura K, Iwamura R, Yoneda K, Odani-Kawabata N, et al. Pharmacologic characterization of omidenepag isopropyl, a novel selective EP2 receptor agonist, as an ocular hypotensive agent. Invest Ophthalmol Vis Sci. 2018;59:145–53.

    CAS  PubMed  Google Scholar 

  22. Erb C, Gast U, Schremmer D. German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye. Graefes Arch Clin Exp Ophthalmol. 2008;246:1593–601.

    PubMed  Google Scholar 

  23. Jaenen N, Baudouin C, Pouliquen P, Manni G, Figueiredo A, Zeyen T. Ocular symptoms and signs with preserved and preservative-free glaucoma medications. Eur J Ophthalmol. 2007;17:341–9.

    CAS  PubMed  Google Scholar 

  24. Tsai JC, McClure CA, Ramos SE, Schlundt DG, Pichert JW. Compliance barriers in glaucoma: a systematic classification. J Glaucoma. 2003;12:393–8.

    PubMed  Google Scholar 

  25. Tsai JC. A comprehensive perspective on patient adherence to topical glaucoma therapy. Ophthalmology. 2009;116:S30–6.

    PubMed  Google Scholar 

  26. Nordstrom BL, Friedman DS, Mozaffari E, Quigley HA, Walker AM. Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol. 2005;140:598–606.

    PubMed  Google Scholar 

  27. Friedman DS, Quigley HA, Gelb L, Tan J, Margolis J, Shah SN, et al. Using pharmacy claims data to study adherence to glaucoma medications: methodology and findings of the Glaucoma Adherence and Persistency Study (GAPS). Invest Ophthalmol Vis Sci. 2007;48:5052–7.

    PubMed  Google Scholar 

  28. Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol. 2012;23:96–104.

    PubMed  Google Scholar 

  29. Caprioli J, Kim JH, Friedman DS, Kiang T, Moster MR, Parrish RK, et al. Special commentary: supporting innovation for safe and effective minimally invasive glaucoma surgery: summary of a joint meeting of the american glaucoma society and the food and drug administration, Washington, DC, February 26, 2014. Ophthalmology. 2015;122:1795–801.

    PubMed  Google Scholar 

  30. Grover DS, Godfrey DG, Smith O, Feuer WJ, Montes de Oca I, Fellman RL. Gonioscopy-assisted transluminal trabeculotomy, ab interno trabeculotomy: technique report and preliminary results. Ophthalmology. 2014;121:855–61.

    PubMed  Google Scholar 

  31. Tanito M, Ikeda Y, Fujihara E. Effectiveness and safety of combined cataract surgery and microhook ab interno trabeculotomy in Japanese eyes with glaucoma: report of an initial case series. Jpn J Ophthalmol. 2017;61:457–64.

    PubMed  Google Scholar 

  32. Lewis RA, von Wolff K, Tetz M, Koerber N, Kearney JR, Shingleton BJ, et al. Canaloplasty: three-year results of circumferential viscodilation and tensioning of Schlemm canal using a microcatheter to treat open-angle glaucoma. J Cataract Refract Surg. 2011;37:682–90.

    PubMed  Google Scholar 

  33. Bull H, von Wolff K, Körber N, Tetz M. Three-year canaloplasty outcomes for the treatment of open-angle glaucoma: European study results. Graefes Arch Clin Exp Ophthalmol. 2011;249:1537–45.

    PubMed  Google Scholar 

  34. Camras LJ, Yuan F, Fan S, Samuelson TW, Ahmed IK, Schieber AT, et al. A novel Schlemm’s Canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2012;53:6115–21.

    PubMed  Google Scholar 

  35. Gulati V, Fan S, Hays CL, Samuelson TW, Ahmed II, Toris CB. A novel 8-mm Schlemm’s canal scaffold reduces outflow resistance in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2013;54:1698–704.

    PubMed  Google Scholar 

  36. SooHoo JR, Seibold LK, Kahook MY. Ab interno trabeculectomy in the adult patient. Middle East Afr J Ophthalmol. 2015;22:25–9.

    PubMed  PubMed Central  Google Scholar 

  37. Vold S, Ahmed II, Craven ER, Mattox C, Stamper R, Packer M, et al. Two-year COMPASS trial results: supraciliary microstenting with phacoemulsification in patients with open-angle glaucoma and cataracts. Ophthalmology. 2016;123:2103–12.

    PubMed  Google Scholar 

  38. Hueber A, Roters S, Jordan JF, Konen W. Retrospective analysis of the success and safety of Gold Micro Shunt Implantation in glaucoma. BMC Ophthalmol. 2013;13:35.

    PubMed  PubMed Central  Google Scholar 

  39. Lavia C, Dallorto L, Maule M, Ceccarelli M, Fea AM. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLoS ONE. 2017;12:e0183142. https://doi.org/10.1371/journal.pone.0183142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arrieta EA, Aly M, Parrish R, Dubovy S, Pinchuk L, Kato Y, et al. Clinicopathologic correlations of poly-(styrene-b-isobutylene-b-styrene) glaucoma drainage devices of different internal diameters in rabbits. Ophthalmic Surg Lasers Imaging. 2011;42:338–45.

    PubMed  Google Scholar 

  41. Batlle JF, Fantes F, Riss I, Pinchuk L, Alburquerque R, Kato YP, et al. Three-year follow-up of a novel aqueous humor microshunt. J Glaucoma. 2016;25:e58-65.

    PubMed  Google Scholar 

  42. Netland PA, Sarkisian SR, Moster MR, Ahmed II, Condon G, Salim S, et al. Randomized, prospective, comparative trial of EX-PRESS glaucoma filtration device versus trabeculectomy (XVT study). Am J Ophthalmol. 2014;157(433–40):e3.

    Google Scholar 

  43. Lin SC. Endoscopic and transscleral cyclophotocoagulation for the treatment of refractory glaucoma. J Glaucoma. 2008;17:238–47.

    PubMed  Google Scholar 

  44. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol. 1963;69:783–801.

    CAS  PubMed  Google Scholar 

  45. Mäepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54:879–83.

    PubMed  Google Scholar 

  46. Buller C, Johnson D. Segmental variability of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 1994;35:3841–51.

    CAS  PubMed  Google Scholar 

  47. Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res. 2009;88:656–70.

    CAS  PubMed  Google Scholar 

  48. Minckler DS, Baerveldt G, Alfaro MR, Francis BA. Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology. 2005;112:962–7.

    PubMed  Google Scholar 

  49. Tanito M, Sano I, Ikeda Y, Fujihara E. Microhook ab interno trabeculotomy, a novel minimally invasive glaucoma surgery, in eyes with open-angle glaucoma with scleral thinning. Acta Ophthalmol. 2016;94:e371–2.

    PubMed  Google Scholar 

  50. Seibold LK, Soohoo JR, Ammar DA, Kahook MY. Preclinical investigation of ab interno trabeculectomy using a novel dual-blade device. Am J Ophthalmol. 2013;155(524–9):e2.

    Google Scholar 

  51. Chin S, Nitta T, Shinmei Y, Aoyagi M, Nitta A, Ohno S, et al. Reduction of intraocular pressure using a modified 360-degree suture trabeculotomy technique in primary and secondary open-angle glaucoma: a pilot study. J Glaucoma. 2012;21:401–7.

    PubMed  Google Scholar 

  52. Malvankar-Mehta MS, Iordanous Y, Chen YN, Wang WW, Patel SS, Costella J, et al. iStent with phacoemulsification versus phacoemulsification alone for patients with glaucoma and cataract: a meta-analysis. PLoS ONE. 2015;10:e0131770.

    PubMed  PubMed Central  Google Scholar 

  53. Fernández-Barrientos Y, García-Feijoó J, Martínez-de-la-Casa JM, Pablo LE, Fernández-Pérez C, García SJ. Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics. Invest Ophthalmol Vis Sci. 2010;51:3327–32.

    PubMed  Google Scholar 

  54. Samuelson TW, Chang DF, Marquis R, et al. A Schlemm canal microstent for intraocular pressure reduction in primary open-angle glaucoma and cataract: The HORIZON Study. Ophthalmology. 2019;126(1):29–37.

    PubMed  Google Scholar 

  55. Ahmed IIK, Fea A, Au L, et al. A prospective randomized trial comparing hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment of open-angle glaucoma: the compare study. Ophthalmology. 2020;127:52–61.

    PubMed  Google Scholar 

  56. Katz LJ, Erb C, Carceller GA, Fea AM, Voskanyan L, Wells JM, et al. Prospective, randomized study of one, two, or three trabecular bypass stents in open-angle glaucoma subjects on topical hypotensive medication. Clin Ophthalmol. 2015;9:2313–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vold SD, Voskanyan L, Tetz M, Auffarth G, Masood I, Au L, et al. Newly diagnosed primary open-angle glaucoma randomized to 2 trabecular bypass stents or prostaglandin: outcomes through 36 months. Ophthalmol Ther. 2016;5:161–72.

    PubMed  PubMed Central  Google Scholar 

  58. Vold SD. Ab interno trabeculotomy with the trabectome system: what does the data tell us? Int Ophthalmol Clin. 2011;51:65–81.

    PubMed  Google Scholar 

  59. Yildirim Y, Kar T, Duzgun E, Sagdic SK, Ayata A, Unal MH. Evaluation of the long-term results of trabectome surgery. Int Ophthalmol. 2016;36:719–26.

    PubMed  Google Scholar 

  60. Mizoguchi T, Nishigaki S, Sato T, Wakiyama H, Ogino N. Clinical results of Trabectome surgery for open-angle glaucoma. Clin Ophthalmol. 2015;9:1889–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahuja Y, Ma Khin Pyi S, Malihi M, Hodge DO, Sit AJ. Clinical results of ab interno trabeculotomy using the trabectome for open-angle glaucoma: the mayo clinic series in Rochester Minnesota. Am J Ophthalmol. 2013;156:927-35.e2.

    PubMed  Google Scholar 

  62. Ting JL, Damji KF, Stiles MC. Ab interno trabeculectomy: outcomes in exfoliation versus primary open-angle glaucoma. J Cataract Refract Surg. 2012;38:315–23.

    PubMed  Google Scholar 

  63. Mosaed S. The first decade of global trabectome outcomes. Eur Ophthalmic Rev. 2014;08:113–9.

    Google Scholar 

  64. Esfandiari H, Taubenslag K, Shah P, Goyal S, Weiner AJ, Severson ML, et al. Two-year data comparison of ab interno trabeculectomy and trabecular bypass stenting using exact matching. J Cataract Refract Surg. 2019;45:608–14.

    PubMed  Google Scholar 

  65. Minckler D, Mosaed S, Dustin L, Ms BF. Trabectome (trabeculectomy-internal approach): additional experience and extended follow-up. Trans Am Ophthalmol Soc. 2008;106:149–59.

    PubMed  PubMed Central  Google Scholar 

  66. Pahlitzsch M, Davids AM, Zorn M, Torun N, Winterhalter S, Maier AB, et al. Three-year results of ab interno trabeculectomy (Trabectome): Berlin study group. Graefes Arch Clin Exp Ophthalmol. 2018;256:611–9.

    PubMed  Google Scholar 

  67. Jordan JF, Wecker T, van Oterendorp C, Anton A, Reinhard T, Boehringer D, et al. Trabectome surgery for primary and secondary open angle glaucomas. Graefes Arch Clin Exp Ophthalmol. 2013;251:2753–60.

    PubMed  PubMed Central  Google Scholar 

  68. Dang YL, Wang X, Dai WW, Huang P, Loewen NA, Zhang C. Two-year outcomes of ab interno trabeculectomy with the Trabectome for Chinese primary open angle glaucoma: a retrospective multicenter study. Int J Ophthalmol. 2018;11:945–50.

    PubMed  PubMed Central  Google Scholar 

  69. Kaplowitz K, Bussel II, Honkanen R, Schuman JS, Loewen NA. Review and meta-analysis of ab-interno trabeculectomy outcomes. Br J Ophthalmol. 2016;100:594–600.

    PubMed  Google Scholar 

  70. Shoji N, Kasahara M, Iijima A, Takahashi M, Tatsui S, Matsumura K, et al. Short-term evaluation of Trabectome surgery performed on Japanese patients with open-angle glaucoma. Jpn J Ophthalmol. 2016;60:156–65.

    CAS  PubMed  Google Scholar 

  71. Esfandiari H, Shah P, Torkian P, Conner IP, Schuman JS, Hassanpour K, et al. Five-year clinical outcomes of combined phacoemulsification and trabectome surgery at a single glaucoma center. Graefes Arch Clin Exp Ophthalmol. 2019;257:357–62.

    PubMed  Google Scholar 

  72. Bendel RE, Patterson MT. Long-term Effectiveness of Trabectome (Ab-interno Trabeculectomy) Surgery. J Curr Glaucoma Pract. 2018;12:119–24.

    PubMed  PubMed Central  Google Scholar 

  73. Salinas L, Chaudhary A, Berdahl JP, Lazcano-Gomez GS, Williamson BK, Dorairaj SK, et al. Goniotomy using the kahook dual blade in severe and refractory glaucoma: 6-month outcomes. J Glaucoma. 2018;27:849–55.

    PubMed  Google Scholar 

  74. Berdahl JP, Gallardo MJ, ElMallah MK, Williamson BK, Kahook MY, Mahootchi A, et al. Six-month outcomes of goniotomy performed with the kahook dual blade as a stand-alone glaucoma procedure. Adv Ther. 2018;35:2093–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dorairaj SK, Seibold LK, Radcliffe NM, Aref AA, Jimenez-Román J, Lazcano-Gomez GS, et al. 12-month outcomes of goniotomy performed using the kahook dual blade combined with cataract surgery in eyes with medically treated glaucoma. Adv Ther. 2018;35:1460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sato T, Kawaji T, Hirata A, Mizoguchi T. 360-degree suture trabeculotomy ab interno to treat open-angle glaucoma: 2-year outcomes. Clin Ophthalmol. 2018;12:915–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Grover DS, Godfrey DG, Smith O, Shi W, Feuer WJ, Fellman RL. Outcomes of gonioscopy-assisted transluminal trabeculotomy (GATT) in eyes with prior incisional glaucoma surgery. J Glaucoma. 2017;26:41–5.

    PubMed  Google Scholar 

  78. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8:1233–40.

    CAS  PubMed  Google Scholar 

  79. Malvankar-Mehta MS, Chen YN, Iordanous Y, Wang WW, Costella J, Hutnik CM. iStent as a solo procedure for glaucoma patients: a systematic review and meta-analysis. PLoS ONE. 2015;10:e0128146.

    PubMed  PubMed Central  Google Scholar 

  80. Klamann MK, Gonnermann J, Pahlitzsch M, Maier AK, Joussen AM, Torun N, et al. iStent inject in phakic open angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015;253:941–7.

    PubMed  Google Scholar 

  81. Craven ER. Trabecular micro-bypass shunt (iStent®): basic science, clinical, and future). Middle East Afr J Ophthalmol. 2015;22:30–7.

    PubMed  PubMed Central  Google Scholar 

  82. Voskanyan L, García-Feijoó J, Belda JI, Fea A, Jünemann A, Baudouin C. Prospective, unmasked evaluation of the iStent® inject system for open-angle glaucoma: synergy trial. Adv Ther. 2014;31:189–201.

    PubMed  PubMed Central  Google Scholar 

  83. Iordanous Y, Kent JS, Hutnik CM, Malvankar-Mehta MS. Projected cost comparison of Trabectome, iStent, and endoscopic cyclophotocoagulation versus glaucoma medication in the ontario health insurance plan. J Glaucoma. 2014;23:e112–8.

    PubMed  Google Scholar 

  84. Fea AM, Belda JI, Rękas M, Jünemann A, Chang L, Pablo L, et al. Prospective unmasked randomized evaluation of the iStent inject (®) versus two ocular hypotensive agents in patients with primary open-angle glaucoma. Clin Ophthalmol. 2014;8:875–82.

    PubMed  PubMed Central  Google Scholar 

  85. Bahler CK, Hann CR, Fjield T, Haffner D, Heitzmann H, Fautsch MP. Second-generation trabecular meshwork bypass stent (iStent inject) increases outflow facility in cultured human anterior segments. Am J Ophthalmol. 2012;153:1206–13.

    PubMed  Google Scholar 

  86. Arriola-Villalobos P, Martínez-de-la-Casa JM, Díaz-Valle D, Fernández-Pérez C, García-Sánchez J, García-Feijoó J. Combined iStent trabecular micro-bypass stent implantation and phacoemulsification for coexistent open-angle glaucoma and cataract: a long-term study. Br J Ophthalmol. 2012;96:645–9.

    PubMed  Google Scholar 

  87. Buchacra O, Duch S, Milla E, Stirbu O. One-year analysis of the iStent trabecular microbypass in secondary glaucoma. Clin Ophthalmol. 2011;5:321–6.

    PubMed  PubMed Central  Google Scholar 

  88. Ichhpujani P, Katz LJ, Gille R, Affel E. Imaging modalities for localization of an iStent(®). Ophthalmic Surg Lasers Imaging. 2010;41:660–3.

    PubMed  Google Scholar 

  89. Vandewalle E, Zeyen T, Stalmans I. The iStent trabecular micro-bypass stent: a case series. Bull Soc Belge Ophtalmol. 2009:23–9.

  90. Arriola-Villalobos P, Martínez-de-la-Casa JM, Díaz-Valle D, García-Vidal SE, Fernández-Pérez C, García-Sánchez J, et al. Mid-term evaluation of the new Glaukos iStent with phacoemulsification in coexistent open-angle glaucoma or ocular hypertension and cataract. Br J Ophthalmol. 2013;97:1250–5.

    PubMed  Google Scholar 

  91. Belovay GW, Naqi A, Chan BJ, Rateb M, Ahmed II. Using multiple trabecular micro-bypass stents in cataract patients to treat open-angle glaucoma. J Cataract Refract Surg. 2012;38:1911–7.

    PubMed  Google Scholar 

  92. Spiegel D, García-Feijoó J, García-Sánchez J, Lamielle H. Coexistent primary open-angle glaucoma and cataract: preliminary analysis of treatment by cataract surgery and the iStent trabecular micro-bypass stent. Adv Ther. 2008;25:453–64.

    PubMed  Google Scholar 

  93. Spiegel D, Wetzel W, Neuhann T, Stuermer J, Hoeh H, Garcia-Feijoo J, et al. Coexistent primary open-angle glaucoma and cataract: interim analysis of a trabecular micro-bypass stent and concurrent cataract surgery. Eur J Ophthalmol. 2009;19:393–9.

    PubMed  Google Scholar 

  94. Patel I, de Klerk TA, Au L. Manchester iStent study: early results from a prospective UK case series. Clin Exp Ophthalmol. 2013;41:648–52.

    PubMed  Google Scholar 

  95. Mansberger SL, Gordon MO, Jampel H, Bhorade A, Brandt JD, Wilson B, et al. Reduction in intraocular pressure after cataract extraction: the ocular hypertension treatment study. Ophthalmology. 2012;119:1826–31.

    PubMed  Google Scholar 

  96. Avar M, Jordan JF, Neuburger M, Engesser D, Lubke J, Anton A, et al. Long-term follow-up of intraocular pressure and pressure-lowering medication in patients after ab-interno trabeculectomy with the Trabectome. Graefes Arch Clin Exp Ophthalmol. 2019;257:997–1003.

    PubMed  Google Scholar 

  97. Dang Y, Kaplowitz K, Parikh HA, Roy P, Loewen RT, Francis BA, et al. Steroid-induced glaucoma treated with trabecular ablation in a matched comparison with primary open-angle glaucoma. Clin Exp Ophthalmol. 2016;44:783–8.

    PubMed  Google Scholar 

  98. Ngai P, Kim G, Chak G, Lin K, Maeda M, Mosaed S. Outcome of primary trabeculotomy ab interno (Trabectome) surgery in patients with steroid-induced glaucoma. Medicine (Baltimore). 2016;95:e5383.

    CAS  Google Scholar 

  99. Overby DR, Bertrand J, Tektas OY, Boussommier-Calleja A, Schicht M, Ethier CR, et al. Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice. Invest Ophthalmol Vis Sci. 2014;55:4922–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Swamy R, Francis BA, Akil H, Yelenskiy A, Francis BA, Chopra V, et al. Clinical results of ab interno trabeculotomy using the trabectome in patients with uveitic glaucoma. Clin Exp Ophthalmol. 2020;48:31–6.

    PubMed  Google Scholar 

  101. Anton A, Heinzelmann S, Ness T, Lubke J, Neuburger M, Jordan JF, et al. Trabeculectomy ab interno with the Trabectome(R) as a therapeutic option for uveitic secondary glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015;253:1973–8.

    PubMed  Google Scholar 

  102. William A, Spitzer MS, Doycheva D, Dimopoulos S, Leitritz MA, Voykov B. Comparison of ab externo trabeculotomy in primary open-angle glaucoma and uveitic glaucoma: long-term outcomes. Clin Ophthalmol. 2016;10:929–34.

    PubMed  PubMed Central  Google Scholar 

  103. Minckler D, Baerveldt G, Ramirez MA, Mosaed S, Wilson R, Shaarawy T, et al. Clinical results with the Trabectome, a novel surgical device for treatment of open-angle glaucoma. Trans Am Ophthalmol Soc. 2006;104:40–50.

    PubMed  PubMed Central  Google Scholar 

  104. Grover DS, Smith O, Fellman RL, Godfrey DG, Gupta A, Montes de Oca I, et al. Gonioscopy-assisted Transluminal Trabeculotomy: An Ab Interno Circumferential Trabeculotomy: 24 Months Follow-up. J Glaucoma. 2018;27:393–401.

    PubMed  Google Scholar 

  105. Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15:68–73.

    PubMed  Google Scholar 

  106. van Oterendorp C, Ness T, Illerhaus G, Neuburger M, Jordan JF. The trabectome as treatment option in secondary glaucoma due to intraocular lymphoma. J Glaucoma. 2014;23:482–4.

    PubMed  Google Scholar 

  107. Bussel II, Kaplowitz K, Schuman JS, Loewen NA. Outcomes of ab interno trabeculectomy with the trabectome by degree of angle opening. Br J Ophthalmol. 2015;99:914–9.

    CAS  PubMed  Google Scholar 

  108. Mosaed S, Rhee D, Filippopoulos T. Trabectome outcomes in adult open-angle glaucoma patients: one-year follow-up. Clin Surg Ophthalmol. 2010;28:5–9.

    Google Scholar 

  109. Jea SY, Francis BA, Vakili G, Filippopoulos T, Rhee DJ. Ab interno trabeculectomy versus trabeculectomy for open-angle glaucoma. Ophthalmology. 2012;119:36–42.

    PubMed  Google Scholar 

  110. Minckler D, Dustin L, Mosaed S. Trabectome for Open-Angle Glaucoma-A Continuing Case Series. Abstract, American Glaucoma Society, Naples, FL, March 5. 2010.

  111. Kaplowitz K, Chen X, Loewen N. Two Year Results for 180 Degree Trabectome Ablation. San Francisco, CA: American Glaucoma Society Annual Meeting. Poster #24. 2013.

  112. Alvarez-Ascencio D, Jimenez-Roman J, Castañeda-Diez R, Lazcano-Gomez G. Full-thickness scleral incisions technique for the treatment of a cyclodialysis cleft following ab interno trabeculotomy. Int J Ophthalmol. 2019;12:1662–5.

    PubMed  PubMed Central  Google Scholar 

  113. Maeda M, Watanabe M, Ichikawa K. Evaluation of trabectome in open-angle glaucoma. J Glaucoma. 2013;22:205–8. https://doi.org/10.1097/IJG.0b013e3182311b92.

    Article  PubMed  Google Scholar 

  114. Kasahara M, Shoji N, Matsumura K. The Influence of Trabectome Surgery on Corneal Endothelial Cells. J Glaucoma. 2019;28:150–3.

    PubMed  Google Scholar 

  115. Samuelson TW, Katz LJ, Wells JM, Duh Y-J, Giamporcaro JE, Group USiS. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118:459–67.

    PubMed  Google Scholar 

  116. Craven ER, Katz LJ, Wells JM, Giamporcaro JE, iStent Study G. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: two-year follow-up. J Cataract Refract Surg. 2012;38:1339–45.

    PubMed  Google Scholar 

  117. Fea AM. Phacoemulsification versus phacoemulsification with micro-bypass stent implantation in primary open-angle glaucoma: randomized double-masked clinical trial. J Cataract Refract Surg. 2010;36:407–12. https://doi.org/10.1016/j.jcrs.2009.10.031.

    Article  PubMed  Google Scholar 

  118. Okeke CO, Miller-Ellis E, Rojas M. Trabectome success factors. Medicine (Baltimore). 2017;96:e7061.

    PubMed  PubMed Central  Google Scholar 

  119. Tojo N, Abe S, Hayashi A. Factors that influence of trabectome surgery for glaucoma patients. J Glaucoma. 2017;26:835–44.

    PubMed  Google Scholar 

  120. Knepper P, Samples J. Intraocular pressure control through linked trabecular meshwork and collector channel motion. Glaucoma Res Clin Adv 2016 to 2018. 2016:44–85.

  121. Klamann MK, Gonnermann J, Maier AK, Bertelmann E, Joussen AM, Torun N. Influence of selective laser trabeculoplasty (SLT) on combined clear cornea phacoemulsification and Trabectome outcomes. Graefes Arch Clin Exp Ophthalmol. 2014;252:627–31.

    PubMed  Google Scholar 

  122. Vold SD, Dustin L, Trabectome Study G. Impact of laser trabeculoplasty on Trabectome® outcomes. Ophthalmic Surg Lasers Imaging. 2010;41:443–5.

    PubMed  Google Scholar 

  123. Kuusniemi A-M, Lindbohm N, Allinen P, Koskinen M, Harju M. Ab interno trabeculotomy: key prognostic factors. J Glaucoma. 2020;29:211–6.

    PubMed  Google Scholar 

  124. Manabe SI, Sawaguchi S, Hayashi K. The effect of the extent of the incision in the Schlemm canal on the surgical outcomes of suture trabeculotomy for open-angle glaucoma. Jpn J Ophthalmol. 2017;61:99–104.

    PubMed  Google Scholar 

  125. Wecker T, Anton A, Neuburger M, Jordan JF, van Oterendorp C. Trabeculotomy opening size and IOP reduction after Trabectome® surgery. Graefes Arch Clin Exp Ophthalmol. 2017;255:1643–50.

    PubMed  PubMed Central  Google Scholar 

  126. Hirabayashi MT, Lee D, King JT, Thomsen S, An JA. Comparison of surgical outcomes Of 360° circumferential trabeculotomy versus sectoral excisional goniotomy with the kahook dual blade at 6 months. Clin Ophthalmol. 2019;13:2017–24.

    PubMed  PubMed Central  Google Scholar 

  127. ElMallah MK, Seibold LK, Kahook MY, Williamson BK, Singh IP, Dorairaj SK. 12-month retrospective comparison of kahook dual blade excisional goniotomy with istent trabecular bypass device implantation in glaucomatous eyes at the time of cataract surgery. Adv Ther. 2019;36:2515–27.

    PubMed  PubMed Central  Google Scholar 

  128. Fellman RL, Grover DS. Episcleral venous fluid wave: intraoperative evidence for patency of the conventional outflow system. J Glaucoma. 2014;23:347–50.

    PubMed  Google Scholar 

  129. Bostan C, Harasymowycz P. episcleral venous outflow: a potential outcome marker for iStent surgery. J Glaucoma. 2017;26:1114–9.

    PubMed  Google Scholar 

  130. Ueda T, Suzumura H, Johnstone M, Uda S, Yoshida K. The correlation between aqueous humor flow and IOP before and after trabectome: developing a grading system to quantify flow. Ophthalmol Ther. 2018;7:133–43.

    PubMed  PubMed Central  Google Scholar 

  131. Luebke J, Boehringer D, Neuburger M, Anton A, Wecker T, Cakir B, et al. Refractive and visual outcomes after combined cataract and trabectome surgery: a report on the possible influences of combining cataract and trabectome surgery on refractive and visual outcomes. Graefes Arch Clin Exp Ophthalmol. 2015;253:419–23.

    PubMed  Google Scholar 

  132. Kono Y, Kasahara M, Iida Y, Tsujisawa T, Shoji N. ocular biometric changes after trabectome surgery. Clin Surg. 2019;4.

  133. Becker B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol. 1958;46:731–6.

    CAS  PubMed  Google Scholar 

  134. Toris CB, Koepsell SA, Yablonski ME, Camras CB. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma. 2002;11:253–8.

    PubMed  Google Scholar 

  135. Townsend DJ, Brubaker RF. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci. 1980;19:256–66.

    CAS  PubMed  Google Scholar 

  136. Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12:275–81.

    CAS  PubMed  Google Scholar 

  137. Toris CB, Gregerson DS, Pederson JE. Uveoscleral outflow using different-sized fluorescent tracers in normal and inflamed eyes. Exp Eye Res. 1987;45:525–32.

    CAS  PubMed  Google Scholar 

  138. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992;62:209–21.

    CAS  PubMed  Google Scholar 

  139. Lütjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW. Quantitative analysis of “plaque material” between ciliary muscle tips in normal- and glaucomatous eyes. Exp Eye Res. 1986;42:457–65.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ryan Chastain-Gross, Ph.D., from Edanz Group (https://en-author-services.edanzgroup.com) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Shoji.

Ethics declarations

Conflicts of interest

M. Kasahara, None; N. Shoji, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Makoto Aihara, MD

Corresponding Author: Nobuyuki Shoji

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasahara, M., Shoji, N. Effectiveness and limitations of minimally invasive glaucoma surgery targeting Schlemm’s canal. Jpn J Ophthalmol 65, 6–22 (2021). https://doi.org/10.1007/s10384-020-00781-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00781-w

Keywords

Navigation