Skip to main content

Advertisement

Log in

Interocular symmetry of the foveal avascular zone area in healthy eyes: a swept-source optical coherence tomography angiography study

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the presence or absence of interocular differences in the foveal avascular zone (FAZ) area in healthy eyes.

Study design

Cross-sectional study.

Methods

We examined 236 healthy eyes of 118 consecutive subjects (mean age, 39.1 ± 18.9 years). We used swept-source optical coherence tomography angiography (OCTA) images of the FAZ to measure its area from both the superficial capillary plexus (SCP-FAZ) and the whole retinal capillary plexus (WCP-FAZ). We also investigated the relationship between interocular differences in SCP-FAZ and other factors such as: axial length, spherical equivalent, central retinal thickness, and retinal vascular density.

Results

There was no significant difference in the FAZ area between the right and left eyes in either the SCP-FAZ (P = 0.61) or WCP-FAZ (P = 0.80), and the FAZ areas of both eyes showed significant positive correlations (SCP-FAZ; P < 0.001, R2 = 0.884, WCP-FAZ; P < 0.001, R2 = 0.856). Bland–Altman plots showed that the mean interocular difference in SCP-FAZ area was 0.002 ± 0.037 mm2 (95% confidence interval, -0.072–0.075 mm2), and in the WCP-FAZ area, 0.050 ± 0.044 mm2 (95% confidence interval, -0.036–0.137 mm2). Multivariate regression analysis showed that none of the investigated factors were significantly associated with interocular differences in SCP-FAZ (P = 0.61, R2 = 0.138).

Conclusions

There was no significant interocular difference in SCP- and WCP-FAZ areas in healthy eyes. The normal range of values for interocular difference in SCP-FAZ area was 0.002 ± 0.037 mm2 and in the WCP-FAZ area, 0.050 ± 0.044 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.

    Article  Google Scholar 

  2. Samara WA, Say EAT, Khoo CTL, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95.

    Article  Google Scholar 

  3. Lupidi M, Coscas F, Cagini C, Fiore T, Spaccini E, Fruttini D, et al. Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography. Am J Ophthalmol. 2016;169:9–23.

    Article  Google Scholar 

  4. Wylęgała A, Teper S, Dobrowolski D, Wylęgała E. Optical coherence angiography: a review. Medicine. 2016;95:e4907.

    Article  Google Scholar 

  5. Gadde SGK, Anegondi N, Bhanushali D, Chidambara L, Yadav NK, Khurana A, et al. Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension. Invest Ophthalmol Vis Sci. 2016;57:246–52.

    Article  CAS  Google Scholar 

  6. Ghasemi Falavarjani K, Iafe NA, Hubschman J-P, Tsui I, Sadda SR, Sarraf D. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58:30–4.

    Article  Google Scholar 

  7. Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology. 2016;123:2352–67.

    Article  Google Scholar 

  8. Bhanushali D, Anegondi N, Gadde SGK, Srinivasan P, Chidambara L, Yadav NK, et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT519–25.

    Article  Google Scholar 

  9. Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2017;124:235–44.

    Article  Google Scholar 

  10. Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76–83.

    Article  Google Scholar 

  11. Adhi M, Filho MAB, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT486–94.

    Article  Google Scholar 

  12. Suzuki N, Hirano Y, Tomiyasu T, Esaki Y, Uemura A, Yasukawa T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion. Invest Ophthalmol Vis Sci. 2016;57:5681–7.

    Article  Google Scholar 

  13. Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57:OCT224–34.

    Article  Google Scholar 

  14. Shahlaee A, Pefkianaki M, Hsu J, Ho AC. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;161:50–5.

    Article  Google Scholar 

  15. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56:3212–7.

    Article  Google Scholar 

  16. Kuehlewein L, Tepelus TC, An L, Durbin MK, Srinivas S, Sadda SR. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography. Invest Ophthalmol Vis Sci. 2015;56:3984–8.

    Article  CAS  Google Scholar 

  17. Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Shiode Y, Hirano M, et al. Factors affecting foveal avascular zone in healthy eyes: An examination using swept-source optical coherence tomography angiography. PLoS One. 2017;12:e0188572.

    Article  Google Scholar 

  18. Yasuno Y, Miura M, Kawana K, Makita S, Sato M, Okamoto F, et al. Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50:405–13.

    Article  Google Scholar 

  19. Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Kumase F, Shiode Y, et al. Factors affecting choroidal vascular density in normal eyes: quantification using en face swept-source optical coherence tomography. Am J Ophthalmol. 2016;170:1–9.

    Article  Google Scholar 

  20. Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57:3907–13.

    Article  CAS  Google Scholar 

  21. Yoshikawa Y, Shoji T, Kanno J, Ibuki H, Ozaki K, Ishii H, et al. Evaluation of microvascular changes in the macular area of eyes with rhegmatogenous retinal detachment without macular involvement using swept-source optical coherence tomography angiography. Clin Ophthalmol. 2018;12:2059–67.

    Article  Google Scholar 

  22. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159:1123–31.

    Article  Google Scholar 

  23. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55:3893–9.

    Article  Google Scholar 

  24. Tan CS, Chan JC, Cheong KX, Ngo WK, Sadda SR. Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina. 2015;46:172–9.

    Article  Google Scholar 

  25. Michalewska Z, Michalewski J, Ornafel-Sagan K, Nawrocki J. Swept-source optical coherence tomography correlations between retina and choroid before and after vitrectomy for epiretinal membranes. Am J Ophthalmol. 2016;165:100–7.

    Article  Google Scholar 

  26. Rispoli M, Savastano MC, Lumbroso B. Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography. Retina. 2015;35:2332–8.

    Article  Google Scholar 

  27. Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58:2087–94.

    Article  Google Scholar 

  28. Mammo Z, Balaratnasingam C, Yu P, Xu J, Heisler M, Mackenzie P, et al. Quantitative noninvasive angiography of the fovea centralis using speckle variance optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:5074–86.

    Article  Google Scholar 

  29. Liu G, Keyal K, Wang F. Interocular symmetry of vascular density and association with central macular thickness of healthy adults by optical coherence tomography angiography. Sci Rep. 2017;7:16297.

    Article  Google Scholar 

  30. Shahlaee A, Samara WA, Hsu J, Say EAT, Khan MA, Sridhar J, et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39–46.

    Article  Google Scholar 

  31. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35:2163–80.

    Article  Google Scholar 

  32. Spaide RF, Curcio CA. Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol. 2017;135:259–62.

    Article  Google Scholar 

  33. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35:2377–83.

    Article  Google Scholar 

  34. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:5780–7.

    Article  CAS  Google Scholar 

  35. Girkin CA, McGwin G, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, et al. Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology. 2011;118:2403–8.

    Article  Google Scholar 

  36. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by cirrus HD-OCT. Arch Ophthalmol. 2012;130:312–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Morizane.

Ethics declarations

Conflicts of interest

M. Liu, None; A. Fujiwara, None; Y. Morizane, None; R. Kawasaki, None; S. Kimura, None; M. Morizane-Hosokawa, None; Y. Shiode, None; M. Hirano, None; S. Doi, None; S. Toshima, None; K. Takahashi, None; M. Hosogi, None; X. Ma, None; F. Shiraga, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Yuki Morizane

Electronic supplementary material

Below is the link to the electronic supplementary material.

10384_2020_719_MOESM1_ESM.tif

Supplementary Fig. 1 Interocular differences in axial length and spherical equivalent. (a and b) axial length showed a strong positive correlation between fellow eyes (P < 0.001, R2 = 0.956), and the interocular difference was not significant (P = 0.44). (c and d) Spherical equivalent showed a strong positive correlation between fellow eyes (P < 0.001, R2 = 0.954), and the interocular difference was not significant (P = 0.25) (TIFF 310 kb)

10384_2020_719_MOESM2_ESM.tif

Supplementary Fig. 2 Interocular differences in central retinal thickness and retinal vascular density. (a and b) central retinal thickness showed a strong positive correlation between fellow eyes (P < 0.001, R2 = 0.745), and the interocular difference was not significant (P = 0.35). (c and d) Retinal vascular density showed a strong positive correlation between fellow eyes (P < 0.001, R2 = 0.962), and the interocular difference was not significant (P = 0.41) (TIFF 328 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Fujiwara, A., Morizane, Y. et al. Interocular symmetry of the foveal avascular zone area in healthy eyes: a swept-source optical coherence tomography angiography study. Jpn J Ophthalmol 64, 171–179 (2020). https://doi.org/10.1007/s10384-020-00719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00719-2

Keywords

Navigation