Skip to main content

Advertisement

Log in

Flare changes after intravitreal injection of ocriplasmin in symptomatic vitreomacular traction syndrome

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the changes in anterior chamber flare after a single intravitreal injection of ocriplasmin (125 μg), in patients with symptomatic vitreomacular traction syndrome (VMT).

Study design

An institutional review board-approved single-center not randomized prospective study.

Methods

Fifteen eyes of fifteen patients (9 women, 6 men) underwent intravitreal injection with ocriplasmin for symptomatic VMT (width of attachment ≤ 1500 μm). Anterior segment flare was measured with a laser flare meter (Kowa) before intravitreal injection and 1 day, 1 week, 1 month after injection. The changes in flare were analyzed; the resolution of VMT was evaluated with spectral-domain OCT.

Results

The mean anterior chamber flare was 10.5 ± 1.9 photons per millisecond (photons/ms) before the injection. After 1 day it increased to 13.6 ± 2.7 photons/ms (p = 0.027) and after 1 week to 14.4 ± 2.5 photons/ms (p = 0.005); after 1 month it decreased to 12.3 ± 2.3 photons/ms (p = 0.123). At 1 day and 1 week after injection, mean anterior chamber flare of fellow eyes was significantly lower than study eyes, while at 1 month this difference was not significant (12.3 ± 2.3 vs. 10.5 ± 1.8 photons/ms, p = 0.124, for study and fellow eyes). There was no statistically significant difference in the changes in flare between women and men or between phakic (N = 10) and pseudophakic (N = 5) eyes. No eye demonstrated intraretinal damage at any time-point. Also, 9 eyes showed resolution of VMT while 6 eyes demonstrated persistence of VMT.

Conclusion

Our study shows that intravitreal injection of ocriplasmin can be a safe and effective approach to treat symptomatic VMT syndrome in selected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reese AB, Jones IS, Cooper WC. Vitreomacular traction syndrome confirmed histologically. Am J Ophthalmol. 1970;69:975–7.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson TL, Nicod E, Simpson A, Angelis A, Grimaccia F, Kanavos P. Symptomatic vitreomacular adhesion. Retina. 2013;33:1503–11.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson MW. How should we release vitreomacular traction: surgically, pharmacologically, or pneumatically? Am J Ophthalmol. 2013;155:203–205.e1.

    Article  PubMed  Google Scholar 

  4. Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–9.

    Article  PubMed  Google Scholar 

  5. Hahn P, Chung MM, Flynn HW, Huang SS, Kim JE, Mahmoud TH, et al. Safety profile of ocriplasmin for symptomatic vitreomacular adhesion: a comprehensive analysis of premarketing and postmarketing experiences. Retina. 2015;35:1128–34.

    Article  CAS  PubMed  Google Scholar 

  6. Shah SP, Jeng-Miller KW, Fine HF, Wheatley HM, Roth DB, Prenner JL. Post-marketing survey of adverse events following ocriplasmin. Ophthalmic Surg Lasers Imaging Retina. 2016;47:156–60.

    Article  PubMed  Google Scholar 

  7. Figueira J, Martins D, Pessoa B, Ferreira N, Meireles A, Sampaio A, et al. The Portuguese experience with ocriplasmin in clinical practice. Ophthalmic Res. 2016;56(4):186–92.

    Article  CAS  PubMed  Google Scholar 

  8. Tyndall J. On the blue of the sky, the polarization of the skylight, and on the polarization of light by cloudy matter generally. Philos Mag J Sci. 1869;37:384–404.

    Article  Google Scholar 

  9. Sawa M, Tsurimaki Y, Tsuru T, Shimizu H. New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol. 1988;32:132–42.

    CAS  PubMed  Google Scholar 

  10. Shah SM, Spalton DJ, Taylor JC. Correlations between laser flare measurements and anterior chamber protein concentrations. Investig Ophthalmol Vis Sci. 1992;33:2878–84.

    CAS  Google Scholar 

  11. el-Harazi SM, Feldman RM, Chuang AZ, Ruiz RS, Villanueva G. Reproducibility of the laser flare meter and laser cell counter in assessing anterior chamber inflammation following cataract surgery. Ophthalmic Surg Lasers. 1998;29:380–4.

    CAS  PubMed  Google Scholar 

  12. Tugal-Tutkun I, Herbort CP. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol. 2010;30:453–64.

    Article  PubMed  Google Scholar 

  13. Blaha G, Brooks N, Mackel C, Pani A, Stewart AP, Price LL, et al. Changes in flare after intravitreal injection of three different anti-vascular endothelial growth factor medications. Retina. 2015;35:577–81.

    Article  CAS  PubMed  Google Scholar 

  14. Uzun A, Yalcindag FN, Demirel S, Batýoðlu F, Ozmert E. Evaluation of aqueous flare levels following intravitreal ranibizumab injection for neovascular age-related macular degeneration. Ocul Immunol Inflamm. 2017;25:229–32.

    Article  CAS  PubMed  Google Scholar 

  15. Morioka M, Takamura Y, Yamada Y, Matsumura T, Gozawa M, Inatani M. Flare levels after intravitreal injection of ranibizumab, aflibercept, or triamcinolone acetonide for diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2018;256:2301–7.

    Article  CAS  PubMed  Google Scholar 

  16. Quiram P, Leverenz V, Baker R, Dang L, Giblin F, Trese M. Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina. 2007;27:1090–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shaikh M, Miller JB, Papakostas TD, Husain D. The efficacy and safety profile of ocriplasmin in vitreomacular interface disorders. Semin Ophthalmol. 2017;32:52–5.

    Article  PubMed  Google Scholar 

  18. Itoh Y, Kaiser PK, Singh RP, Srivastava SK, Ehlers JP. Assessment of retinal alterations after intravitreal ocriplasmin with spectral-domain optical coherence tomography. Ophthalmology. 2014;121:2506–7.e2.

    Article  Google Scholar 

  19. Sakuma T, Tanaka M, Mizota A, Inoue J, Pakola S. Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Investig Ophthalmol Vis Sci. 2015;46:3295–9.

    Article  Google Scholar 

  20. Chatziralli I, Theodossiadis G, Parikakis E, Datseris I, Theodossiadis P. Real-life experience after intravitreal ocriplasmin for vitreomacular traction and macular hole: A spectral-domain optical coherence tomography prospective study. Graefes Arch Clin Exp Ophthalmol. 2016;254:223–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

V. Pirani, None; P. Pelliccioni, None; C. Cesari, None; G. Carrozzi, None; E. Cavallero, None; C. Mariotti, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pelliccioni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author: Paolo Pelliccioni

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirani, V., Pelliccioni, P., Cesari, C. et al. Flare changes after intravitreal injection of ocriplasmin in symptomatic vitreomacular traction syndrome. Jpn J Ophthalmol 63, 255–261 (2019). https://doi.org/10.1007/s10384-019-00660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-019-00660-z

Keywords

Navigation