Skip to main content

Advertisement

Log in

Reproducibility and reliability of retinal and optic disc measurements obtained with swept-source optical coherence tomography in a healthy population

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the reproducibility of macular and peripapillary thickness measurements, and optic nerve morphometric data obtained with Triton Optical coherence tomography (OCT) in a healthy population.

Study design

Observational cross sectional study.

Material and methods

A total of 108 eyes underwent evaluation using the Triton Swept Source-OCT. A wide protocol was used and measurements in each eye were repeated three times. Morphometric data of the optic nerve head, full macular thickness, ganglion cell layer (GCL) and retinal nerve fiber layer thickness (RNFL) were analyzed. For each parameter, the coefficient of variation (COV) and the intra-class (ICC) correlation values were calculated.

Results

Measurements were highly reproducible for all morphometric measurements of the optic disc, with a mean COV of 6.36%. Macular full thickness showed good COV and ICC coefficients, with a mean COV value of 1.00%. Macular GCL thickness showed a mean COV value of 3.06%, and ICC higher than 0.787. Peripapillary RNFL thickness showed good COV and ICC coefficients, with a mean COV value of 8.31% and ICC higher than 0.684. The inferotemporal sector showed the lowest ICC (0.685).

Conclusions

Triton OCT presents good reproducibility values in measurements corresponding to retinal parameters, with macular measurements showing the highest reproducibility rates. Peripapillary RNFL measurements should be evaluated with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keane PA, Balaskas K, Sim DA, Aman K, Denniston AK, Aslam T, et al. Automated analysis of vitreous inflammation using spectral-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Article  PubMed  Google Scholar 

  3. Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2005;46:2440–3.

    Article  PubMed  Google Scholar 

  5. Garcia-Martin E, Pueyo V, Ara J, Almarcegui C, Martin J, Pablo L, et al. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients. Mult Scler. 2011;17:830–7.

    Article  PubMed  CAS  Google Scholar 

  6. Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology. 2009;73:302–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69:1603–9.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Martin E, Pueyo V, Martin J, Almarcegui C, Ara JR, Dolz I, et al. Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis. Eur J Ophthalmol. 2010;20:167–73.

    Article  PubMed  Google Scholar 

  9. Garcia-Martin E, Pablo LE, Herrero R, Satue M, Polo V, Larrosa JM, et al. Diagnostic ability of a linear discriminant function for spectral domain optical coherence tomography in multiple sclerosis patients. Ophthalmology. 2012;119:1705–11.

    Article  PubMed  Google Scholar 

  10. Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, et al. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol. 2014;98(3):350–5.

    Article  PubMed  CAS  Google Scholar 

  11. Polo V, Satue M, Rodrigo MJ, Otin S, Alarcia R, Bambo MP, et al. Visual dysfunction and its correlation with retinal changes in patients with Parkinson’s disease: an observational cross-sectional study. BMJ Open. 2016;6(5):e009658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Larrosa JM, Garcia-Martin E, Bambo MP, Pinilla J, Polo V, Otin S, et al. Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for Fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:3043–51.

    Article  PubMed  Google Scholar 

  13. Polo V, Garcia-Martin E, Bambo MP, Pinilla J, Larrosa JM, Satue M, et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye (Lond). 2014;28:680–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vizzeri G, Balasubramanian M, Bowd C, Weinreb RN, Medeiros FA, Zangwill LM. Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Opt Express. 2009;17:4004–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, Martin J, Fernandez J. Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci. 2011;52:4124–31.

    Article  PubMed  Google Scholar 

  16. Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology. 2012;119:2161–7.

    Article  PubMed  Google Scholar 

  17. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4971–8.

    Article  PubMed  Google Scholar 

  18. Copete S, Flores-Moreno I, Montero JA, Duker JS, Ruiz-Moreno JM. Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol. 2014;98:334–8.

    Article  PubMed  Google Scholar 

  19. De-Pablo-Gómez-de-Liaño L, Fernández-Vigo JI, Ventura-Abreu N, García-Feijóo J, Fernández-Vigo JÁ, Gómez-de-Liaño R. Agreement between three optical coherence tomography devices to assess the insertion distance and thickness of horizontal rectus muscles. J Pediatr Ophthalmol Strabismus. 2017;54:168–76.

    Article  PubMed  Google Scholar 

  20. Bahrami B, Ewe SYP, Hong T, Zhu M, Ong G, Luo K, et al. Influence of retinal pathology on the reliability of macular thickness measurement: a comparison between optical coherence tomography devices. Ophthalmic Surg Lasers Imaging Retina. 2017;48:319–25.

    Article  PubMed  Google Scholar 

  21. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report No. 1. Arch Ophthalmol. 1985;103:1796–806.

    Article  Google Scholar 

  22. Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT—a devices. PLoS One. 2017;12:e0177059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Garcia-Martin E, Polo V, Larrosa JM, Marques ML, Herrero R, Martin J, et al. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology. 2014;121(2):573–9.

    Article  PubMed  Google Scholar 

  24. Garcia-Martin E, Ara JR, Martin J, Almarcegui C, Dolz I, Vilades E, et al. Retinal and optic nerve degeneration in patients with multiple sclerosis followed up for 5 years. Ophthalmology. 2017;124:688–96.

    Article  PubMed  Google Scholar 

  25. Satue M, Obis J, Alarcia R, Orduna E, Rodrigo MJ, Vilades E, et al. Retinal and choroidal changes in patients with Parkinson’s disease detected by Swept Source Optical coherence tomography. Curr Eye Res. 2018;43:109–15.

    Article  PubMed  Google Scholar 

  26. Çetinkaya E, Duman R, Duman R, Sabaner MC. Repeatability and reproducibility of automatic segmentation of retinal layers in healthy subjects using Spectralis optical coherence tomography. Arq Bras Oftalmol. 2017;80:78–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Satue.

Ethics declarations

Conflicts of interest

M. Satue, None; A. Gavin, None; E. Orduna, None; E. Vilades, None; M. J. Rodrigo, None; J. Obis, None; V. Polo, None; J. M. Larrosa, None; L. E. Pablo, None; E. G. -Martin, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author: Maria Satue

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satue, M., Gavin, A., Orduna, E. et al. Reproducibility and reliability of retinal and optic disc measurements obtained with swept-source optical coherence tomography in a healthy population. Jpn J Ophthalmol 63, 165–171 (2019). https://doi.org/10.1007/s10384-018-00647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-00647-2

Keywords

Navigation