Skip to main content

Advertisement

Log in

Quantification of retinal changes after resolution of submacular hemorrhage secondary to polypoidal choroidal vasculopathy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate changes in the thickness of retinal layers after resolution of submacular hemorrhage secondary to polypoidal choroidal vasculopathy (PCV).

Study design

Retrospective, observational study.

Methods

This study included 21 patients (21 eyes) who had been diagnosed with submacular hemorrhage secondary to PCV and treated using anti-vascular endothelial growth factor monotherapy. After the hemorrhage had resolved, the thicknesses of the retinal layers were measured on horizontal- and vertical-crosshair optical coherence tomography scan images. The thickness of each layer in the region affected by the hemorrhage was compared with the thickness of the layer in the corresponding region in the fellow eye, as well as between an unaffected region in the eye with the hemorrhage and the corresponding region in the fellow eye.

Results

Optical coherence tomography (OCT) was performed 5.5±2.8 months after diagnosis. In the horizontal OCT images, the outer plexiform layer (OPL) and outer nuclear layer (ONL) + photoreceptor layer (PRL) were significantly thinner in the affected region than in the corresponding region (P = 0.019 and P <0.001, respectively). In the vertical OCT image, the ONL+PRL was significantly thinner in the affected region than in the corresponding region (P <0.001). The thickness of the retinal layer in the unaffected region did not differ from that in the corresponding region of the fellow eye.

Conclusions

The significant thinning of the outer retinal layers in the regions affected by submacular hemorrhage suggests that the hemorrhage induces marked damage in the outer retinal layers, explaining the poor visual prognosis of submacular hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buch H, Vinding T, La Cour M, Appleyard M, Jensen GB, Nielsen NV. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: the Copenhagen City Eye Study. Ophthalmology. 2004;111:53–61.

    Article  PubMed  Google Scholar 

  2. Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477–85.

    Article  PubMed  Google Scholar 

  3. Maberley DA, Hollands H, Chuo J, Tam G, Konkal J, Roesch M, et al. The prevalence of low vision and blindness in Canada. Eye (Lond). 2006;20:341–6.

    Article  CAS  PubMed  Google Scholar 

  4. Avery RL, Fekrat S, Hawkins BS, Bressler NM. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16:183–9.

    Article  CAS  PubMed  Google Scholar 

  5. Bennett SR, Folk JC, Blodi CF, Klugman M. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109:33–7.

    Article  CAS  PubMed  Google Scholar 

  6. Altaweel MM, Daniel E, Martin DF, Mittra RA, Grunwald JE, Lai MM, et al. Outcomes of eyes with lesions composed of > 50% blood in the Comparison of Age-related Macular Degeneration Treatments Trials (CATT). Ophthalmology. 2015;122(391–8):e5.

    Google Scholar 

  7. Kim JH, Chang YS, Kim JW, Kim CG, Yoo SJ, Cho HJ. Intravitreal anti-vascular endothelial growth factor for submacular hemorrhage from choroidal neovascularization. Ophthalmology. 2013;121:926–35.

    Article  PubMed  Google Scholar 

  8. McKibbin M, Papastefanou V, Matthews B, Cook H, Downey L. Ranibizumab monotherapy for sub-foveal haemorrhage secondary to choroidal neovascularisation in age-related macular degeneration. Eye (Lond). 2010;24:994–8.

    Article  CAS  PubMed  Google Scholar 

  9. Shienbaum G, Garcia Filho CA, Flynn HW Jr, Nunes RP, Smiddy WE, Rosenfeld PJ. Management of submacular hemorrhage secondary to neovascular age-related macular degeneration with anti-vascular endothelial growth factor monotherapy. Am J Ophthalmol. 2013;155:1009–13.

    Article  CAS  PubMed  Google Scholar 

  10. Stifter E, Michels S, Prager F, Georgopoulos M, Polak K, Hirn C, et al. Intravitreal bevacizumab therapy for neovascular age-related macular degeneration with large submacular hemorrhage. Am J Ophthalmol. 2007;144:886–92.

    Article  CAS  PubMed  Google Scholar 

  11. Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol. 1982;94:762–73.

    Article  CAS  PubMed  Google Scholar 

  12. Toth CA, Morse LS, Hjelmeland LM, Landers MB 3rd. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109:723–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bhisitkul RB, Winn BJ, Lee OT, Wong J, Pereira Dde S, Porco TC, et al. Neuroprotective effect of intravitreal triamcinolone acetonide against photoreceptor apoptosis in a rabbit model of subretinal hemorrhage. Invest Ophthalmol Vis Sci. 2008;49:4071–7.

    Article  PubMed  Google Scholar 

  14. Notomi S, Hisatomi T, Murakami Y, Terasaki H, Sonoda S, Asato R, et al. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PLoS One. 2013;8:e53338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ueda-Arakawa N, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Yoshimura N. Visual prognosis of eyes with submacular hemorrhage associated with exudative age-related macular degeneration. Jpn J Ophthalmol. 2012;56:589–98.

    Article  PubMed  Google Scholar 

  16. Bae K, Cho GE, Yoon JM, Kang SW. Optical coherence tomographic features and prognosis of pneumatic displacement for submacular hemorrhage. PLoS One. 2016;11:e0168474.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim JH, Chang YS, Kim JW, Lee TG, Kim CG, Lee DW. Radiating hemorrhage in exudative age-related macular degeneration. Jpn J Ophthalmol. 2016;60:466–75.

    Article  PubMed  Google Scholar 

  18. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995;15:100–10.

    Article  CAS  PubMed  Google Scholar 

  19. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sho K, Takahashi K, Yamada H, Wada M, Nagai Y, Otsuji T, et al. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol. 2003;121:1392–6.

    Article  PubMed  Google Scholar 

  21. Kim JH, Chang YS, Kim JW, Lee TG, Kim CG. Prevalence of subtypes of reticular pseudodrusen in newly diagnosed exudative age-related macular degeneration and polypoidal choroidal vasculopathy in Korean patients. Retina. 2015;35:2604–12.

    Article  PubMed  Google Scholar 

  22. Ueda-Arakawa N, Ooto S, Nakata I, Yamashiro K, Tsujikawa A, Oishi A, et al. Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. Am J Ophthalmol. 2013;155(260–9):e2.

    Google Scholar 

  23. Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, et al. Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci. 2003;44:4481–8.

    Article  PubMed  Google Scholar 

  24. Spaide RF. Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. Retina. 2013;33:1800–8.

    Article  PubMed  Google Scholar 

  25. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina. 2013;33:265–76.

    Article  PubMed  Google Scholar 

  26. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121:1572–8.

    Article  PubMed  Google Scholar 

  27. Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology. 2010;117:1585–94.

    Article  PubMed  Google Scholar 

  28. Balaratnasingam C, Lee WK, Koizumi H, Dansingani K, Inoue M, Freund KB. Polypoidal choroidal vasculopathy: a distinct disease or manifestation of many? Retina. 2016;36:1–8.

    Article  PubMed  Google Scholar 

  29. Terasaki H, Miyake Y, Kondo M, Tanikawa A. Focal macular electroretinogram before and after drainage of macular subretinal hemorrhage. Am J Ophthalmol. 1997;123:207–11.

    Article  CAS  PubMed  Google Scholar 

  30. Kim KM, Kim JH, Chang YS, Kim JW, Kim CG. Long-term outcomes in patients with neovascular age-related macular degeneration who maintain dry macula after three monthly ranibizumab injections. Semin Ophthalmol. 2016;1–6. https://doi.org/10.1080/08820538.2016.1247179.

  31. Coscas F, Coscas G, Lupidi M, Dirani A, Srour M, Semoun O, et al. Restoration of outer retinal layers after aflibercept therapy in exudative AMD: prognostic value. Invest Ophthalmol Vis Sci. 2015;56:4129–34.

    Article  CAS  PubMed  Google Scholar 

  32. Acton JH, Smith RT, Hood DC, Greenstein VC. Relationship between retinal layer thickness and the visual field in early age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53:7618–24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pappuru RR, Ouyang Y, Nittala MG, Hemmati HD, Keane PA, Walsh AC, et al. Relationship between outer retinal thickness substructures and visual acuity in eyes with dry age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:6743–8.

    Article  PubMed  Google Scholar 

  34. Cheung CM, Bhargava M, Xiang L, Mathur R, Mun CC, Wong D, et al. Six-month visual prognosis in eyes with submacular hemorrhage secondary to age-related macular degeneration or polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2013;251:19–25.

    Article  PubMed  Google Scholar 

  35. Kim JH, Lee TG, Chang YS, Kim CG, Cho SW. Short-term choroidal thickness changes in patients treated with either ranibizumab or aflibercept: a comparative study. Br J Ophthalmol. 2016;100(12):1634–9.

    Article  PubMed  Google Scholar 

  36. Pilat AV, Proudlock FA, Mohammad S, Gottlob I. Normal macular structure measured with optical coherence tomography across ethnicity. Br J Ophthalmol. 2014;98:941–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study received financial support from Kim’s Eye Hospital Research Center for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hui Kim.

Ethics declarations

Conflicts of interest

J. H. Kim, None; Y. S. Chang, None; D. W. Lee, None; C. G. Kim, None; J. W. Kim, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Chang, Y.S., Lee, D.W. et al. Quantification of retinal changes after resolution of submacular hemorrhage secondary to polypoidal choroidal vasculopathy. Jpn J Ophthalmol 62, 54–62 (2018). https://doi.org/10.1007/s10384-017-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0549-2

Keywords

Navigation