Skip to main content

Advertisement

Log in

Monocular retinal degeneration induced by intravitreal injection of sodium iodate in rabbit eyes

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Our purpose was to evaluate the anatomical and functional changes in retinae of rabbit eyes following monocular intravitreal injection of sodium iodate (SI).

Methods

Twenty albino rabbits were divided into four groups and underwent monocular intravitreal injection with four different doses of SI (0.1, 0.2, 0.4, and 0.8 mg). Before and for 28 days after injection, the eyes were examined using fundus photography, optical coherence tomography (OCT), and electroretinography (ERG). At postinjection days 2, 7, and 28, the eyes were enucleated and underwent histological examination.

Results

On fundus examination, no distinct retinal changes were seen in any group except the 0.8-mg group, which showed chorioretinal vascular attenuation. In 0.1 and 0.2-mg groups, no significant anatomical changes were found except transient hyperreflective dots over the vitreoretinal interface on OCT. In 0.4 and 0.8-mg groups, disruption of the ellipsoid zone and diffuse retinal swelling were observed in the early period on OCT. In the 0.4-mg group, the outer retina was significantly destroyed at day 28, whereas the inner retina was relatively preserved. In the 0.8-mg group, the entire retina was destroyed irreversibly. The b-wave of ERG was reduced immediately in all groups, which recovered fully (0.1- and 0.2-mg groups), partially (0.4-mg group), or never (0.8-mg group). No structural or functional abnormalities were found in the fellow control eyes.

Conclusions

Retinal degeneration following intravitreal injection of SI appears to be dose dependent; retinal damage is reversible at low doses but irreversible at high doses. At a certain dose, the outer retina may be preferably ablated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chader GJ. Animal models in research on retinal degenerations: past progress and future hope. Vis Res. 2002;42:393–9.

    Article  PubMed  Google Scholar 

  2. Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, et al. Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50:1371–7.

    Article  PubMed  Google Scholar 

  3. Li T, Snyder WK, Olsson JE, Dryja TP. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 1996;93:14176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishida K, Kamei M, Kondo M, Sakaguchi H, Suzuki M, Fujikado T, et al. Efficacy of suprachoroidal-transretinal stimulation in a rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci. 2010;51:2263–8.

    Article  PubMed  Google Scholar 

  5. Yamauchi Y, Agawa T, Tsukahara R, Kimura K, Yamakawa N, Miura M, et al. Correlation between high-resolution optical coherence tomography (OCT) images and histopathology in an iodoacetic acid-induced model of retinal degeneration in rabbits. Br J Ophthalmol. 2011;95:1157–60.

    Article  PubMed  Google Scholar 

  6. Isago H, Sugano E, Murayama N, Tamai M, Tomita H. Establishment of monocular-limited photoreceptor degeneration models in rabbits. BMC Ophthalmol. 2013;13:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosch S, Johnen S, Mataruga A, Muller F, Pfarrer C, Walter P. Selective photoreceptor degeneration by intravitreal injection of N-methyl-N-nitrosourea. Invest Ophthalmol Vis Sci. 2014;55:1711–23.

    Article  PubMed  Google Scholar 

  8. Kiuchi K, Yoshizawa K, Shikata N, Moriguchi K, Tsubura A. Morphologic characteristics of retinal degeneration induced by sodium iodate in mice. Curr Eye Res. 2002;25:373–9.

    Article  PubMed  Google Scholar 

  9. Sorsby A. Experimental pigmentary degeneration of the retina by sodium iodate. Br J Ophthalmol. 1941;25:58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Ng TK, Ye C, Yip YW, Law K, Chan SO, et al. Assessing sodium iodate-induced outer retinal changes in rats using confocal scanning laser ophthalmoscopy and optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:1696–705.

    Article  CAS  PubMed  Google Scholar 

  11. Machalinska A, Lubinski W, Klos P, Kawa M, Baumert B, Penkala K, et al. Sodium iodate selectively injuries the posterior pole of the retina in a dose-dependent manner: morphological and electrophysiological study. Neurochem Res. 2010;35:1819–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitano S, Hori S, Nagataki S. Transport of fluorescein in the rabbit eye after treatment with sodium iodate. Exp Eye Res. 1988;46:863–70.

    Article  CAS  PubMed  Google Scholar 

  13. Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, et al. Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev. 2012;21:42–53.

    Article  CAS  PubMed  Google Scholar 

  14. Wang K, Li XX, Jiang YR, Dong JQ. Influential factors of thresholds for electrically evoked potentials elicited by intraorbital electrical stimulation of the optic nerve in rabbit eyes. Vis Res. 2007;47:3012–24.

    Article  PubMed  Google Scholar 

  15. Siu T, Morley J. Implantation of episcleral electrodes via anterior orbitotomy for stimulation of the retina with induced photoreceptor degeneration: an in vivo feasibility study on a conceptual visual prosthesis. Acta Neurochir (Wien). 2008;150:477–85 (discussion 485).

    Article  CAS  Google Scholar 

  16. Murray MM. The effects of administration of sodium iodate to man and animals. Bull World Health Organ. 1953;9:211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Siu TL, Morley JW. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis. Graefes Arch Clin Exp Ophthalmol. 2007;245:1797–803.

    Article  PubMed  Google Scholar 

  18. Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci. 2013;54:7630–6.

    Article  PubMed  Google Scholar 

  19. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.

    Article  CAS  PubMed  Google Scholar 

  20. Dolz-Marco R, Gallego-Pinazo R, Pinazo-Duran MD, Pons-Vazquez S, Domingo-Pedro JC, Diaz-Llopis M. Intravitreal docosahexaenoic acid in a rabbit model: preclinical safety assessment. PLoS One. 2014;9:e96872.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sorsby A, Reading HW. Experimental degeneration of the retina. XI. The effect of sodium iodate on retinal -SH levels. Vision Res. 1964;4:511–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ringvold A, Olsen EG, Flage T. Transient breakdown of the retinal pigment epithelium diffusion barrier after sodium iodate: a fluorescein angiographic and morphological study in the rabbit. Exp Eye Res. 1981;33:361–9.

    Article  CAS  PubMed  Google Scholar 

  23. Grignolo A, Orzalesi N, Calabria GA. Studies on the fine structure and the rhodopsin cycle of the rabbit retina in experimental degeneration induced by sodium iodate. Exp Eye Res. 1966;5:86–97.

    Article  CAS  PubMed  Google Scholar 

  24. Redfern WS, Storey S, Tse K, Hussain Q, Maung KP, Valentin JP, et al. Evaluation of a convenient method of assessing rodent visual function in safety pharmacology studies: effects of sodium iodate on visual acuity and retinal morphology in albino and pigmented rats and mice. J Pharmacol Toxicol Methods. 2011;63:102–14.

    Article  CAS  PubMed  Google Scholar 

  25. Korte GE, Wanderman MC. Distribution of Na+K(+)-ATPase in regenerating retinal pigment epithelium in the rabbit. A study by electron microscopic cytochemistry. Exp Eye Res. 1993;56:219–29.

    Article  CAS  PubMed  Google Scholar 

  26. Korte GE, Rappa E, Andracchi S. Localization of alkaline phosphatase on basolateral plasma membrane of normal and regenerating retinal pigment epithelium. A cytochemical study in rabbits. Invest Ophthalmol Vis Sci. 1991;32:3187–97.

    CAS  PubMed  Google Scholar 

  27. Obata R, Yanagi Y, Tamaki Y, Hozumi K, Mutoh M, Tanaka Y. Retinal degeneration is delayed by tissue factor pathway inhibitor-2 in RCS rats and a sodium-iodate-induced model in rabbits. Eye (Lond). 2005;19:464–8.

    Article  CAS  PubMed  Google Scholar 

  28. Korte GE, Mrowiec E, Landzberg KS, Youssri A. Reorganization of actin microfilaments and microtubules in regenerating retinal pigment epithelium. Exp Eye Res. 1995;61:189–203.

    Article  CAS  PubMed  Google Scholar 

  29. Korte GE, Reppucci V, Henkind P. RPE destruction causes choriocapillary atrophy. Invest Ophthalmol Vis Sci. 1984;25:1135–45.

    CAS  PubMed  Google Scholar 

  30. Flage T, Ringvold A. The retinal pigment epithelium diffusion barrier in the rabbit eye after sodium iodate injection. A light and electron microscopic study using horseradish peroxidase as a tracer. Exp Eye Res. 1982;34:933–40.

    Article  CAS  PubMed  Google Scholar 

  31. Ogata N, Kanai K, Ohkuma H, Uyama M. Pathologic response of the regenerated retinal pigment epithelium (RPE)—affected by sodium iodate (NaIO3). Nihon Ganka Gakkai Zasshi. 1989;93:466–74.

    CAS  PubMed  Google Scholar 

  32. Mizota A, Adachi-Usami E. Functional recovery of retina after sodium iodate injection in mice. Vis Res. 1997;37:1859–65.

    Article  CAS  PubMed  Google Scholar 

  33. Machalinska A, Kawa MP, Pius-Sadowska E, Roginska D, Klos P, Baumert B, et al. Endogenous regeneration of damaged retinal pigment epithelium following low dose sodium iodate administration: an insight into the role of glial cells in retinal repair. Exp Eye Res. 2013;112:68–78.

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Iacovelli J, Spencer C, Saint-Geniez M. Direct effect of sodium iodate on neurosensory retina. Invest Ophthalmol Vis Sci. 2014;55:1941–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franco LM, Zulliger R, Wolf-Schnurrbusch UE, Katagiri Y, Kaplan HJ, Wolf S, et al. Decreased visual function after patchy loss of retinal pigment epithelium induced by low-dose sodium iodate. Invest Ophthalmol Vis Sci. 2009;50:4004–10.

    Article  PubMed  Google Scholar 

  36. Tanaka M, Machida S, Ohtaka K, Tazawa Y, Nitta J. Third-order neuronal responses contribute to shaping the negative electroretinogram in sodium iodate-treated rats. Curr Eye Res. 2005;30:443–53.

    Article  CAS  PubMed  Google Scholar 

  37. Stone JL, Barlow WE, Humayun MS, de Juan E, Milam AH Jr. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110:1634–9.

    Article  CAS  PubMed  Google Scholar 

  38. Enzmann V, Row BW, Yamauchi Y, Kheirandish L, Gozal D, Kaplan HJ, et al. Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Exp Eye Res. 2006;82:441–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ashburn FS Jr, Pilkerton AR, Rao NA, Marak GE. The effects of iodate and iodoacetate on the retinal adhesion. Invest Ophthalmol Vis Sci. 1980;19:1427–32.

    CAS  PubMed  Google Scholar 

  40. Konda BR, Pararajasegaram G, Wu GS, Stanforth D, Rao NA. Role of retinal pigment epithelium in the development of experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 1994;35:40–7.

    CAS  PubMed  Google Scholar 

  41. Baich A, Ziegler M. The effect of sodium iodate and melanin on the formation of glyoxylate. Pigment Cell Res. 1992;5:394–5.

    Article  CAS  PubMed  Google Scholar 

  42. Heike M, Marmor MF. l-cystein protects the pigment epithelium from acute sodium iodate toxicity. Doc Ophthalmol. 1990;75:15–22.

    Article  CAS  PubMed  Google Scholar 

  43. Noell WK. Experimentally induced toxic effects on structure and function of visual cells and pigment epithelium. Am J Ophthalmol. 1953;36:103–16.

    Article  CAS  PubMed  Google Scholar 

  44. Tao Z, Dai J, He J, Li C, Li Y, Yin ZQ. The influence of NaIO(3)-induced retinal degeneration on intra-retinal layer and the changes of expression profile/morphology of DA-ACs and mRGCS. Mol Neurobiol. 2013;47:241–60.

    Article  CAS  PubMed  Google Scholar 

  45. Negi A, Marmor MF. The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1983;24:1475–9.

    CAS  PubMed  Google Scholar 

  46. Machalinska A, Lejkowska R, Duchnik M, Kawa M, Roginska D, Wiszniewska B, et al. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Curr Eye Res. 2014;39:1033–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Public Welfare and Safety Program 2012-0006566 by Ministry of Education and Science Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hum Chung.

Ethics declarations

Conflicts of interest

B.-J. Cho, None; J.-M. Seo, None; H. G. Yu, None; H. Chung, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, BJ., Seo, JM., Yu, H.G. et al. Monocular retinal degeneration induced by intravitreal injection of sodium iodate in rabbit eyes. Jpn J Ophthalmol 60, 226–237 (2016). https://doi.org/10.1007/s10384-016-0429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0429-1

Keywords

Navigation