Skip to main content

Advertisement

Log in

Early changes in corneal edema following torsional phacoemulsification using anterior segment optical coherence tomography and Scheimpflug photography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess corneal edema after torsional phacoemulsification using anterior segment optical coherence tomography (AS-OCT) and Scheimpflug photography (Pentacam).

Methods

Seventy-six eyes with cataract surgery were randomized into 2 groups: a 2.2 mm micro-coaxial incision group (n = 37) and a 2.8 mm standard incision group (n = 39). Patients were examined preoperatively and at 1 day, 1 week and 1 month postoperatively. Incision architecture and pachymetry at the wound level were measured by AS-OCT. The corneal volume within 3.0 and 10.0 mm circles of the cornea was measured using Pentacam.

Results

The cumulative dissipated energy (CDE) was lower in the micro-coaxial incision (2.2 mm) group than in the standard incision (2.8 mm) group (P = 0.043). Corneal edema measurements showed less corneal thickness at the endothelial side of the incision on postoperative day 1 in the micro-incision group (1061 ± 76 vs. 1153 ± 97 μm, P = 0.041). The corneal volume within the 10.0 mm circle was less on postoperative day 1 in the micro-incision group (63.75 ± 4.83 vs. 65.97 ± 4.52 mm3, P = 0.035). The endothelial cell count did not change significantly throughout the study.

Conclusion

The micro-coaxial 2.2 mm incision may incur slightly less damage than the 2.8 mm standard incision in the context of torsional phacoemulsification. Observation of corneal morphology and damage using AS-OCT and Pentacam can be helpful in the evaluation and quantification of fine corneal edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsuneoka H, Shiba T, Takahashi Y. Feasibility of ultrasound cataract surgery with a 1.4 mm incision. J Cataract Refract Surg. 2001;27:934–40.

    Article  CAS  PubMed  Google Scholar 

  2. Leaming DV. Practice styles and preferences of ASCRS members—2003 survey. J Cataract Refract Surg. 2004;30:892–900.

    Article  PubMed  Google Scholar 

  3. Kaushik S, Ram J, Brar GS, Bandyopadhyay S. Comparison of the thermal effect on clear corneal incisions during phacoemulsification with different generation machines. Ophthalmic Surg Lasers Imaging. 2004;35:364–70.

    PubMed  Google Scholar 

  4. Praveen MR, Vasavada AR, Gajjar D, Pandita D, Vasavada VA, Vasavada VA, et al. Comparative quantification of ingress of trypan blue into the anterior chamber after microcoaxial, standard coaxial, and bimanual phacoemulsification: randomized clinical trial. J Cataract Refract Surg. 2008;34:1007–12.

    Article  PubMed  Google Scholar 

  5. Bourne WM, Kaufman HE. Specular microscopy of human corneal endothelium in vivo. Am J Ophthalmol. 1976;81:319–23.

    Article  CAS  PubMed  Google Scholar 

  6. Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. II. Qualitative evaluation of corneal endothelial photomicrographs. Arch Ophthalmol. 1979;97:1720–5.

    Article  CAS  PubMed  Google Scholar 

  7. Waring GO 3rd, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89:531–90.

    Article  PubMed  Google Scholar 

  8. Ohara K, Tsuru T, Inoda S. Morphometric parameters of the corneal endothelial cells. Nippon Ganka Gakkai Zasshi. 1987;91:1073–8.

    CAS  PubMed  Google Scholar 

  9. Tagawa H, Kado M, Okada A, Furukawa H. Property and clinical availability of the noncontact autofocus specular microscope. Nippon Ganka Gakkai Zasshi. 1994;98:772–6.

    CAS  PubMed  Google Scholar 

  10. Torres LF, Saez-Espinola F, Colina JM, Retchkiman M, Patel MR, Agurto R, et al. In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography. J Cataract Refract Surg. 2006;32:1820–6.

    Article  PubMed  Google Scholar 

  11. Uçakhan OO, Gesoğlu P, Ozkan M, Kanpolat A. Corneal elevation and thickness in relation to the refractive status measured with the Pentacam Scheimpflug system. J Cataract Refract Surg. 2008;34:1900–5.

    Article  PubMed  Google Scholar 

  12. Lundberg B, Jonsson M, Behndig A. Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery. Am J Ophthalmol. 2005;139:1035–41.

    Article  PubMed  Google Scholar 

  13. Mencucci R, Ponchietti C, Virgili G, Menchini U. Corneal endothelial damage after cataract surgery: microincision versus standard technique. J Cataract Refract Surg. 2006;32:1351–4.

    Article  PubMed  Google Scholar 

  14. Dick HB, Kohnen T, Jacobi FK, Jacobi KW. Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision. J Cataract Refract Surg. 1996;22:63–71.

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22:1079–84.

    Article  CAS  PubMed  Google Scholar 

  16. Miyata K, Nagamoto T, Maruoka S, et al. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J Cataract Refract Surg. 2002;28:1546–50.

    Article  PubMed  Google Scholar 

  17. Milla′ E, Verge′s C, Cipre′s M. Corneal endothelium evaluation after phacoemulsification with continuous anterior chamber infusion. Cornea. 2005;24:278–82.

    Article  Google Scholar 

  18. Kim EK, Cristol SM, Geroski DH, McCarey BE, Edelhauser HF. Corneal endothelial damage by air bubbles during phacoemulsification. Arch Ophthalmol. 1997;115:81–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kim EK, Cristol SM, Kang SJ, Edelhauser HF, Kim HL, Lee JB. Viscoelastic protection from endothelial damage by air bubbles. J Cataract Refract Surg. 2002;28:1047–53.

    Article  PubMed  Google Scholar 

  20. Suzuki H, Takahashi H, Hori J, Hiraoka M, Igarashi T, Shiwa T. Phacoemulsification associated corneal damage evaluated by corneal volume. Am J Ophthalmol. 2006;142:525–8.

    Article  PubMed  Google Scholar 

  21. Mencucci R, Ambrosini S, Ponchietti C, Marini M, Vannelli GB, Menchini U. Ultrasound thermal damage to rabbit corneas after simulated phacoemulsification. J Cataract Refract Surg. 2005;31:2180–6.

    Article  PubMed  Google Scholar 

  22. Mackool RJ, Russell RS. Effect of foldable intraocular lens insertion on incision width. J Cataract Refract Surg. 1996;22:571–4.

    Article  CAS  PubMed  Google Scholar 

  23. Fine IH, Hoffman RS, Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography. J Cataract Refract Surg. 2007;33:94–7.

    Article  PubMed  Google Scholar 

  24. Kreisler KR, Mortenson SW, Mamalis N. Endothelial cell loss following “modern” phacoemulsification by a senior resident. Opthalmic Surg. 1992;23:158–60.

    CAS  Google Scholar 

  25. Suzuki H, Oki K, Takahashi K, Shiwa T, Takahashi H. Functional evaluation of corneal endothelium by combined measurement of corneal volume alteration and cell density after phacoemulsification. J Cataract Refract Surg. 2007;33:2077–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Healthcare Technology R&D Project, Ministry for Health Welfare & Family Affairs, Republic of Korea (A 090573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choun-Ki Joo.

About this article

Cite this article

Li, YJ., Kim, HJ. & Joo, CK. Early changes in corneal edema following torsional phacoemulsification using anterior segment optical coherence tomography and Scheimpflug photography. Jpn J Ophthalmol 55, 196–204 (2011). https://doi.org/10.1007/s10384-011-0007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-011-0007-5

Keywords

Navigation