Skip to main content

Advertisement

Log in

Retinal nerve fiber layer defect patterns in primary angle-closure and open-angle glaucoma: A comparison using optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the patterns of retinal nerve fiber layer (RNFL) thickness loss in primary angle-closure glaucoma (PACG) and primary open-angle glaucoma (POAG) using optical coherence tomography (OCT).

Methods

Forty-three participants with PACG and 60 with POAG underwent fast RNFL thickness measurement by OCT. Eyes were classified according to the visual field mean deviation (VF-MD) into mild (>−8 dB), moderate (−8 dB to >−16 dB), and advanced (≤−16 dB) glaucoma subgroups. The raw RNFL thickness data were compared with data from the Thai normative database.

Results

Mean (SD) age was 67.0 (9.6) and 64.1 (11.6) years in the PACG and POAG groups, respectively (P = 0.19). In the mild subgroups, a focal RNFL thickness loss was found in the inferior area in the POAG group, but not in the PACG group. The RNFL defect involved sectors 1, 6, and 7 in the moderately advanced disease subgroups of both PACG and POAG and extended through almost all sectors in the advanced disease subgroups. The deepest RNFL defect, −17.25 μm, was found in sector 6 of the mild POAG subgroup, compared with −8.78 μm in the PACG group (P = 0.04). The number of affected points in each sector in the mild subgroups was greater in the POAG group than in the PACG group.

Conclusion

Participants with mild POAG had deeper and more localized RNFL defects than did participants with PACG. The pattern was similar in participants with moderate or advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262–267.

    Article  CAS  PubMed  Google Scholar 

  2. Seo JH, Park KH, Kim YJ, Yoo YC, Kang SH, Kim DM. Differences in the histopathology and matrix metalloproteinase expression in Tenon’s tissue of primary open-angle glaucoma and primary angle-closure glaucoma. Korean J Ophthalmol 2008;22:37–42.

    Article  PubMed  Google Scholar 

  3. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Ophthalmology 2008;115:239–245, e232.

    Article  PubMed  Google Scholar 

  4. Sihota R, Sony P, Gupta V, Dada T, Singh R. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt 2005;25:408–415.

    Article  PubMed  Google Scholar 

  5. Sihota R, Saxena R, Taneja N, Venkatesh P, Sinha A. Topography and fluorescein angiography of the optic nerve head in primary open-angle and chronic primary angle closure glaucoma. Optom Vis Sci 2006;83:520–526.

    Article  PubMed  Google Scholar 

  6. Caprioli J, Sears M, Miller JM. Patterns of early visual field loss in open-angle glaucoma. Am J Ophthalmol 1987;103:512–517.

    CAS  PubMed  Google Scholar 

  7. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology 1996;103:640–649.

    CAS  PubMed  Google Scholar 

  8. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 2002;86:238–242.

    Article  PubMed  Google Scholar 

  9. Manassakorn A, Chaidaroon W, Ausayakhun S, Aupapong S, Wattananikorn S. Normative database of retinal nerve fiber layer and macular thickness in a Thai population. Jpn J Ophthalmol 2008;52:450–456.

    Article  PubMed  Google Scholar 

  10. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123:464–470.

    Article  PubMed  Google Scholar 

  11. Thomas R, Muliyil J, Simha RA, Parikh RS. Heidelberg retinal tomograph (HRT 2) parameters in primary open angle glaucoma and primary angle closure glaucoma: a comparative study in an Indian population. Ophthalmic Epidemiol 2006;13:343–350.

    Article  PubMed  Google Scholar 

  12. Chen HY, Huang ML, Tsai YY, Hung PT, Lin EJ. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation. J Glaucoma 2008;17:105–110.

    Article  PubMed  Google Scholar 

  13. Rhee K, Kim YY, Nam DH, Jung HR. Comparison of visual field defects between primary open-angle glaucoma and chronic primary angle-closure glaucoma in the early or moderate stage of the disease. Korean J Ophthalmol 2001;15:27–31.

    CAS  PubMed  Google Scholar 

  14. Lau LI, Liu CJ, Chou JC, Hsu WM, Liu JH. Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity. Ophthalmology 2003;110:1890–1894.

    Article  PubMed  Google Scholar 

  15. Bonomi L, Marraffa M, Marchini G, Canali N. Perimetric defects after a single acute angle-closure glaucoma attack. Graefes Arch Clin Exp Ophthalmol 1999;237:908–914.

    Article  CAS  PubMed  Google Scholar 

  16. Aung T, Husain R, Gazzard G, et al. Changes in retinal nerve fiber layer thickness after acute primary angle closure. Ophthalmology 2004;111:1475–1479.

    Article  PubMed  Google Scholar 

  17. Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001;119:1492–1499.

    CAS  PubMed  Google Scholar 

  18. Keltner JL, Johnson CA, Anderson DR, et al. The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 2006;113:1603–1612.

    Article  PubMed  Google Scholar 

  19. Budenz DL, Anderson DR, Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 2007;114:1046–1052.

    Article  PubMed  Google Scholar 

  20. Liu X, Ling Y, Luo R, Ge J, Zheng X. Optical coherence tomography in measuring retinal nerve fiber layer thickness in normal subjects and patients with open-angle glaucoma. Chin Med J (Engl) 2001;114:524–529.

    CAS  Google Scholar 

  21. Salchow DJ, Oleynikov YS, Chiang MF, et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology 2006;113:786–791.

    Article  PubMed  Google Scholar 

  22. Varma R, Bazzaz S, Lai M. Optical tomography-measured retinal nerve fiber layer thickness in normal Latinos. Invest Ophthalmol Vis Sci 2003;44:3369–3373.

    Article  PubMed  Google Scholar 

  23. Hoh ST, Lim MC, Seah SK, et al. Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology 2006;113:773–777.

    Article  PubMed  Google Scholar 

  24. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 2009;18:501–505.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Manassakorn.

Additional information

Presented as a poster presentation at the World Glaucoma Congress, 8–11 July 2009, Boston, Massachusetts, USA.

About this article

Cite this article

Manassakorn, A., Aupapong, S. Retinal nerve fiber layer defect patterns in primary angle-closure and open-angle glaucoma: A comparison using optical coherence tomography. Jpn J Ophthalmol 55, 28–34 (2011). https://doi.org/10.1007/s10384-010-0898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0898-6

Keywords

Navigation