Skip to main content

Advertisement

Log in

Relationship between central corneal thickness and visual field defect in open-angle glaucoma

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore the relationship between central corneal thickness (CCT) and visual field defect in open-angle glaucoma (OAG).

Methods

In this cross-sectional study, we tested 344 eyes in 344 eligible patients, including 233 with normal-tension glaucoma (NTG) and 111 with primary open-angle glaucoma (POAG). The association among variables, especially that between visual field defect and CCT, was probed by multivariate regression in eyes with NTG or POAG, and in all eyes. All eyes were divided into early, moderate, or severe visual field defect groups according to Anderson’s classification. Statistical analysis was performed for all cases, and for the three CCT groups.

Results

Multivariate regression analysis revealed an association between CCT and visual field defect in eyes with NTG but not in eyes with POAG or in all eyes. The eyes with early visual field defect had greater CCT than did those with severe visual field defect (533.2 versus 519.0 µm). The eyes with greater CCT had better visual field indices than did those with thinner CCT (−6.91 versus −9.17 dB).

Conclusions

Central corneal thickness is a factor associated with the status of the visual field defect: a greater CCT is associated with a better visual field index. Other factors such as the glaucoma subtype play a role in the effect of CCT on visual field defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldmann H, Schmidt T. Über Applanationstonometrie. Ophthalmologica 1957;134:221–242.

    Article  CAS  Google Scholar 

  2. Chihara E. Assessment of true intraocular pressure: the gap between theory and practical data. Surv Ophthalmol 2008;53:203–218.

    Article  Google Scholar 

  3. Whitacre MM, Stein R. Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol 1993;38:1–30.

    Article  CAS  Google Scholar 

  4. Argus WA. Ocular hypertension and central corneal thickness. Ophthalmology 1995;102:1810–1812.

    Article  CAS  Google Scholar 

  5. Herndon LW, Choudhri SA, Cox T, Damji KF, Shields MB, Allingham RR. Central corneal thickness in normal, glaucomatous, and ocular hypertensive eyes. Arch Ophthalmol 1997;115:1137–1141.

    Article  CAS  Google Scholar 

  6. Wolfs RC, Klaver CC, Vingerling JR, et al. Distribution of central corneal thickness and its association with intraocular pressure: the Rotterdam Study. Am J Ophthalmol 1997;123:767–772.

    Article  CAS  Google Scholar 

  7. Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal-tension glaucoma. Arch Ophthalmol 1999;117:14–16.

    Article  CAS  Google Scholar 

  8. Hansen FK, Ehlers N. Elevated tonometer readings caused by a thick cornea. Acta Ophthalmol (Copenh) 1971;49:775–778.

    Article  CAS  Google Scholar 

  9. Hansen FK. A clinical study of the normal human central corneal thickness. Acta Ophthalmol (Copenh) 1971;49:82–89.

    CAS  Google Scholar 

  10. Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copenh) 1975;53:34–43.

    Article  CAS  Google Scholar 

  11. Johnson M, Kass MA, Moses RA, Grodzi WJ. Increased corneal thickness simulating elevated intraocular pressure. Arch Ophthalmol 1978;96:664–665.

    Article  CAS  Google Scholar 

  12. Ehlers N, Hansen FK. Central corneal thickness in low-tension glaucoma. Acta Ophthalmol 1974;54:740–746.

    Google Scholar 

  13. Wilson MR, Martone JF. Epidemiology of chronic open-angle glaucoma. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. Vol 2. 2nd ed. St. Louis: Mosby; 1996. p. 753–768.

    Google Scholar 

  14. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701–713.

    Article  Google Scholar 

  15. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:714–720.

    Article  Google Scholar 

  16. Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and frequency doubling technology perimetry abnormalities in ocular hypertensive eyes. Ophthalmology 2003;110:1903–1908.

    Article  Google Scholar 

  17. Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients. Am J Ophthalmol 2003;135:131–137.

    Article  Google Scholar 

  18. Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 2004;137:863–871.

    Article  Google Scholar 

  19. Medeiros FA, Sample PA, Zangwill LM, Bowd C, Aihara M, Weinreb RN. Corneal thickness as a risk factor for visual field loss in patients with pre-perimetric glaucomatous optic neuropathy. Am J Ophthalmol 2003:136:805–813.

    Article  Google Scholar 

  20. Singh RP, Goldberg I, Graham SL, et al. Central corneal thickness, tonometry, and ocular dimensions in glaucoma and ocular hypertension. J Glaucoma 2001;10:206–210.

    Article  CAS  Google Scholar 

  21. Ventura AC, Bohnke M, Mojon DS. Central corneal thickness measurements in patients with normal tension glaucoma, primary open angle glaucoma, pseudoexfoliation glaucoma, or ocular hypertension. Br J Ophthalmol 2001;85:792–795.

    Article  CAS  Google Scholar 

  22. Herman DC, Hodge DO, Bourne WM. Increased corneal thickness in patients with ocular hypertension. Arch Ophthalmol 2001;119:334–336.

    Article  CAS  Google Scholar 

  23. La Rosa FA, Gross RL, Orengo-Nania S. Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Arch Ophthalmol 2001;119:23–27.

    PubMed  Google Scholar 

  24. Emara BY, Tingey DP, Probst LE, Motolko MA. Central corneal thickness in low-tension glaucoma. Can J Ophthalmol 1999;34:319–324.

    CAS  PubMed  Google Scholar 

  25. Wu LL, Suzuki Y, Ideta R, Araie M. Central corneal thickness of normal tension glaucoma patient in Japan. Jpn J Ophthalmol 2000;44:643–647.

    Article  CAS  Google Scholar 

  26. Shimmyo M, Ross AJ, Moy A, Mostafavi R. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol 2003;136:603–613.

    Article  Google Scholar 

  27. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 2004;122:17–21.

    Article  Google Scholar 

  28. Shah S, Chatterjee A, Mathai M, et al. Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. Ophthalmology 1999;106:2154–2160.

    Article  CAS  Google Scholar 

  29. Jonas JB, Stroux A, Velten I, Juenemann A, Martus P, Budde WM. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci 2005;46:1269–1274.

    Article  Google Scholar 

  30. Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology 2004;111:2126–2132.

    Article  Google Scholar 

  31. Iwase A, Suzuki Y, Araie M, et al. The prevalence of primary open-angle glaucoma in Japanese. The Tajimi Study. Ophthalmology 2004;111:1641–1648.

    PubMed  Google Scholar 

  32. The Japan Glaucoma Society. The Japan Glaucoma Society guidelines for glaucoma. 2nd ed. [in Japanese]. J Jpn Ophthalmol Soc 2006;110;777–814.

    Google Scholar 

  33. Anderson DR, Patella VM. Automated static perimetry. St. Louis: Mosby; 1999. p. 164.

    Google Scholar 

  34. Drance SM. The coefficient of scleral rigidity in normal and glaucomatous eyes. Arch Ophthalmol 1960;63:668–674.

    Article  CAS  Google Scholar 

  35. Leske MC, Heijl A, Hussein M, et al.; Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Arch Ophthalmol 2003;121:48–56.

    Article  Google Scholar 

  36. Chauhan BC, Hutchison DM, LeBlanc RP, Artes PH, Nicolela MT. Central corneal thickness and progression of the visual field and optic disc in glaucoma. Br J Ophthalmol 2005;89:1008–1012.

    Article  CAS  Google Scholar 

  37. Sullivan-Mee M, Halverson KD, Saxon MC, Saxon GB, Qualls C. Central corneal thickness and normal tension glaucoma: a cross-sectional study. Optometry 2006;77:134–140.

    Article  Google Scholar 

  38. Sullivan-Mee M, Halverson KD, Saxon GB, Saxon MC, Qualls C. Relationship between central corneal thickness and severity of glaucomatous visual field loss in a primary care population. Optometry 2006;77:40–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Yamamoto.

About this article

Cite this article

Lin, W., Aoyama, Y., Kawase, K. et al. Relationship between central corneal thickness and visual field defect in open-angle glaucoma. Jpn J Ophthalmol 53, 477–481 (2009). https://doi.org/10.1007/s10384-009-0702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0702-7

Keywords

Navigation