Skip to main content

Advertisement

Log in

A closer look at the world business cycle synchronization

  • Original Paper
  • Published:
International Economics and Economic Policy Aims and scope Submit manuscript

Abstract

This paper uses a transformation of the period-by-period index proposed by Cerqueira and Martins (2009), to overcome some of its shortcomings, in a non-parametric estimation to analyze how business cycle synchronization for a sample of 111 countries evolved in the period 1960–2007. The period-by-period index is able to distinguish between negative correlations due to episodes in single years, asynchronous behavior in turbulent times and synchronous behavior over stable periods and the non-parametric approach provides a more detailed analysis than the use of a parametric approach. The results show that since the nineties the synchronization at the world level, within and between country groups, experienced a dramatic increase reaching the highest values ever at the sample end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The world merchandise trade as percentage of GDP (taken from World Bank Indicators) was 21 % in

    1970, 32 % in 1990, 41 % in 2000 and 53 % in 2008.

  2. For an analysis of the trend evolution of financial openness see Lane and Millesi-Ferreti (2006).

  3. See, for instance, Baxter and Crucini (1995), Kollman (1996) or Ambler et al. (2002).

  4. See Baxter and Koupiratsas (2004).

  5. See Calvo and Mendoza (2000) or Mendoza (2001).who explain the herd behavior of investors and the sudden reversal of capital flows.

  6. See Frankel and Rose (1998), Imbs (2004, 2006), Cálderon et al. (2007), Baxter and Koupiratsas (2004) and Cerqueira and Martins (2009). An important exception is the work of Fidrmuc (2001) which does not find any relation between trade and BCS.

  7. See for instance, Bayoumi and Helbling (2003) who study the correlation coefficients between the United States and the other countries of the G7 group, Heathcote and Perri (2004) who document the correlations of output, consumption, and investment between the United States and an aggregate of Europe, Canada, and Japan or Stock and Watson (2005) who analyze the G-7 countries since 1960 using a structural factor VAR model.

  8. Stationarity of the time series is of importance because we have to assume mean and variance constant for all t.

  9. See proof in appendix A

  10. This problem was first pointed out by Artis and Okubo (2011).

  11. The country list and classification are in Appendix B.

  12. The estimated national business cycle series were tested for the presence of a unit root using the ADF test. All of them rejected the null, hence they conform to the key supposition that they are covariance stationary.

  13. See Fan and Gijbels(1996).

  14. f(m) (to)is the m-order derivative.

  15. Note that if h → ∞, then K(0) will weight all observations equal and we are back to the traditional OLS estimator.

  16. Anyway, and as the ROT method to estimate the bandwidth has a tendency to oversmooth we perform a sensitivity analysis and check how the estimated curves change in response to different values of the selected bandwidth (see Ichimura and Todd(2007)).

  17. The consistent significance test for continuous regressors defined by Racine (1997) reports a p-value near 0, rejecting \( {H_0}:\ \frac{{dE\left( {{\rho_{ij,t }}} \right)}}{dt }=0 \). This means that the test says that the estimated curve is significantly different from a constant level.

  18. To have an idea of what the values of the unbounded index mean in terms of correlation, if we recenter the value to a limited interval by computing tanh(ρ nb) we will get the following correspondence:

    ρ nb

    0

    ±0,3

    ±0,6

    ±0,9

    ±1,2

    ±1,5

    ±1,8

    tanh(ρ nb)

    0

    ±0.29

    ±0.54

    ±0.72

    ±0.83

    ±0.91

    ±0,95

    Note that tanh is the inverse function of the Fisher transformation applied to the linear traditional correlation statistic.

  19. See the groups composition in Appendix B.

  20. The consistent significance tests report a p-value near 0 for all regions except North America, thus rejecting the null. The reported p-value for North America is 0.06513, thus it only rejects the null at 10 % significance level. At 5 % significance level the test does not reject that the cross-correlation in NAm was constant over the whole period

  21. However, we should consider that the estimated variability is weakly significant.

  22. Groups composition in Appendix B.

  23. The consistent significance tests report p-values near 0 for all regions thus rejecting the null.

  24. The consistent significance tests report p-values near 0 for all regions thus rejecting the null.

References

  • Ambler S, Cardia E, Zimmermann C (2002) International transmission of the business cycle in a multi-sector model. Eur Econ Rev 46(2):273–300

    Article  Google Scholar 

  • Artis M, Marcellino M, Proietti T (2003) “Dating the Euro area business cycle”. CEPR Working 556 Paper No. 3696

  • Artis MJ, Okubo T (2011) Does International Trade Really Lead to Business Cycle Synchronization? A Panel Data Approach. Manch Sch 79(2):318–332

    Article  Google Scholar 

  • Baxter M, Crucini MJ (1995) Business Cycles and the Asset Structure of Foreign Trade. Int Econ Rev 36(4):821–854

    Article  Google Scholar 

  • Baxter, M. and M. Kouparitsas (2004) "Determinants of Business Cycle commovement: a Robust Analysis", NBER Working Paper No. 10725

  • Bayoumi T. And T. Helbling (2003). “Are They All in the Same Boat? The 2000–2001 Growth Slowdown and the G-7 Business Cycle Linkages,” IMF Working Papers 03/46, International Monetary Fund.

  • Bordo, M. and T. Helbling, (2003),“Have National Business Cycles Become More Synchronized?”, NBER working Paper No. 10130

  • Calderon C, Chong A, Stein E (2007) Trade intensity and business cycle synchronization: Are developing countries any different? J Int Econ 71(1):2–21

    Article  Google Scholar 

  • Calvo G, Mendoza EG (2000) Rational contagion and the globalization of securities markets. J Int Econ 51(1):79–113

    Article  Google Scholar 

  • Cerqueira PA, Martins R (2009) Measuring the Determinants of Business Cycle Synchronization Using a Panel Approach. Econ Lett 102(2):106–108

    Article  Google Scholar 

  • Clark TE, van Wincoop E (2001) Borders and Business Cycles. J Int Econ 55:59–85

    Article  Google Scholar 

  • Fan J, Gijbels I (1996) Local Polynomial Modelling and Its Applications. Chapman Hall, London

    Google Scholar 

  • Fidrmuc, J., (2001) “The endogeneity. of the optimum currency area criteria, intra-industry trade, and EMU enlargement”, manuscript, Austria National Bank, 2002.

  • Frankel J, Rose A (1998) The Endogeneity. of the Optimum Currency Area Criteria. Econ J 108:1009–1025

    Article  Google Scholar 

  • Heathcote J, Perri F (2003) Why has the U.S. economy become less correlated with the rest of the world? Am Econ Rev 93:63–69

    Article  Google Scholar 

  • Heathcote J, Perri F (2004) Financial globalization and real regionalization. J Econ Theory 119:207–243

    Article  Google Scholar 

  • Ichimura, H. and P. Todd (2007). “Implementing Nonparametric and Semiparametric Estimators,” in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.

  • Imbs, J. (2004), "Trade, Finance, Specialization and Synchronization" Review of Economics and Statistics, August 2004

  • Imbs, J. (2006), “The Real Effects of Financial Integration” Journal of International Economics, Vol. 68(2)

  • Kalemli-Ozcan S., E. Papaioannou and J. L. Peydró (2010) “Financial Integration and Business Cycle Synchronization” NBER Working Papers nº 14887

  • Kollman R (1996) Incomplete asset markets and the cross-country consumption correlation puzzle. J Econ Dyn Control 20:945–961

    Article  Google Scholar 

  • Kose M, Otrok C, Whiteman C (2003) International Business Cycles: World, Region, and Country-Specific Factors. Am Econ Rev 93(4):1216–1239

    Article  Google Scholar 

  • Kose M, Prasad E, Terrones M (2008) How does globalization affect the synchronization of business cycles? Am Econ Rev 93:57–62

    Article  Google Scholar 

  • Lane. P and G. M. Milesi-Ferretti (2006), "The External Wealth of Nations Mark II: Revised and Extended Estimates of Foreign Assets and Liabilities, 1970-2004" CEPR Discussion Paper no. 5644

  • Mendoza, E. G. (2001). “Credit, Prices, and Crashes: Business Cycles with a Sudden Stop,” NBER Working Papers nº 8338

  • Racine JS (1997) Consistent significance testing for nonparametric regression. J Bus Econ Stat 15(3):369–379

    Google Scholar 

  • Stock JH, Watson MW (2005) Understanding Changes In International Business Cycle Dynamics. J Eur Econ Assoc 3(5):968–1006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro André Cerqueira.

Additional information

I am grateful to Elias Soukiazis, Rodrigo Martins, Paulo Saraiva and participants at the GEMF seminar in FEUC (2011), at the SPiD seminar in UTAD (2011) and at the 14th INFER Annual Conference in FEUC(2012) for useful comments. The usual disclaimer applies.

Appendices

Appendix A - Proof of Proposition 1

Proposition 1: ρ ij,t is bounded between 3–2T and 1

Proof:

$$ \max \left( {{\rho_{ij,t }}} \right)=1 $$

As the second component in Eq. 1 is always non-negative, when it is zero we get ρ ij,t  = 1.

$$ \min \left( {{\rho_{ij,t }}} \right)=3-2T $$

To find the extreme values of a specific value of ρ ij,t (let’s say t = 1), we analyze the function:

$$ {f_1}({d_{i,1 }},{d_{i,2 }},\ldots,{d_{i,T }},{d_{j,1 }},{d_{j,2 }},\ldots,{d_{j,T }})={{\left( {\frac{{{d_{i,1 }}-{{\overline{d}}_i}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }}-{{\overline{d}}_i}} \right)}}^2}}}}}-\frac{{{d_{j,1 }}-{{\overline{d}}_j}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }}-{{\overline{d}}_j}} \right)}}^2}}}}}} \right)}^2} $$

From the derivatives to obtain the stationary points we get:

$$ \frac{{d{f_1}}}{{d\left( {{d_{i,1 }}} \right)}}=2\left( {\frac{{{d_{i,1 }}-{{\overline{d}}_i}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }}-{{\overline{d}}_i}} \right)}}^2}}}}}-\frac{{{d_{j,1 }}-{{\overline{d}}_j}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }}-{{\overline{d}}_j}} \right)}}^2}}}}}} \right)\frac{{{C_1}(T)}}{{{D_{1i }}(.)}}\mathop{\sum}\limits_{t=2}^T\mathop{\sum}\limits_{s=t+1}^T{{\left( {{d_{i,t }}-{d_{i,s }}} \right)}^2}=0 $$
$$ \frac{{d{f_1}}}{{d\left( {{d_{j,1 }}} \right)}}=2\left( {\frac{{{d_{i,1 }}-{{\overline{d}}_i}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }}-{{\overline{d}}_i}} \right)}}^2}}}}}-\frac{{{d_{j,1 }}-{{\overline{d}}_j}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }}-{{\overline{d}}_j}} \right)}}^2}}}}}} \right)\frac{{{C_1}(T)}}{{{D_{1j }}(.)}}\mathop{\sum}\limits_{t=2}^T\mathop{\sum}\limits_{s=t+1}^T{{\left( {{d_{j,t }}-{d_{j,s }}} \right)}^2}=0 $$

(At this point we do not need to know the remaining 2T-2 derivatives)

Where C 1 is a function that depends on T, so if T fixed C 1 is a constant and

\( {D_{1i }}(.)={{\sqrt{{\frac{1}{T}\mathop{\sum}\limits_{t=1}^T{{{\left( {{d_{i,t }}-{{\overline{d}}_i}} \right)}}^2}}}}^3} \) and \( {D_{1j }}(.)={{\sqrt{{\frac{1}{T}\mathop{\sum}\limits_{t=1}^T{{{\left( {{d_{j,t }}-{{\overline{d}}_j}} \right)}}^2}}}}^3} \)

So or the first factor is zero, which implies that f 1 = 0 and ρ ij,t = 1,(which is the result for the maximum) or, as the last factor is a sum of squares, each component of the sum is zero. Therefore all observations but the first in each series are equal and, as D 1i (.) ≠ 0 and D 1j (.) ≠ 0 or the function would not be defined, implies that the first observation is different from the others.

With the last result, and considering that all observation of series d i,t and d j,t for t ≥ 2 are α and β, respectively, the problem simplifies to :

$$ maxf_1^{*}(.)={{\left( {\begin{array}{*{20}c} {\frac{{{d_{i,1 }}-\frac{{{d_{i,1 }}}}{T}-\frac{{\alpha \left( {T-1} \right)}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{i,1 }}-\frac{{{d_{i,1 }}}}{T}-\frac{{\alpha \left( {T-1} \right)}}{T}} \right)}}^2}+{{{\left( {\alpha -\frac{{{d_{i,1 }}}}{T}-\frac{{\alpha \left( {T-1} \right)}}{T}} \right)}}^2}\left( {T-1} \right)} \right)}}}}-} \\ {} \\ {-\frac{{{d_{j,1 }}-\frac{{{d_{j,1 }}}}{T}-\frac{{\beta (T-1)}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{j,1 }}-\frac{{{d_{j,1 }}}}{T}-\frac{{\beta (T-1)}}{T}} \right)}}^2}+{{{\left( {\beta -\frac{{{d_{j,1 }}}}{T}-\frac{{\beta \left( {T-1} \right)}}{T}} \right)}}^2}(T-1)} \right)}}}}} \\ \end{array}} \right)}^2} $$

Where \( \frac{{df_1^{*}}}{{d\alpha }}=0 \) and \( \frac{{df_1^{*}}}{{d\beta }}=0 \).

Which means that we just have to optimize with respect to the first observation of each series (d i,1 and d j,1 ).

As the proposed period-by-period index is invariable if we add to all elements of either series a constant (see proof below), we will work onwards with two series, observed over T periods (d i and d j }, where all observations but the first are zero. In this case the problem is:

$$ f_1^{** }(.)={{\left( {\frac{{{d_{i,1 }}-\frac{{{d_{i,1 }}}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{i,1 }}-\frac{{{d_{i,1 }}}}{T}} \right)}}^2}+{{{\left( {\frac{{{d_{i,1 }}}}{T}} \right)}}^2}\left( {T-1} \right)} \right)}}}}-\frac{{{d_{j,1 }}-\frac{{{d_{j,1 }}}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{j,1 }}-\frac{{{d_{j,1 }}}}{T}} \right)}}^2}+{{{\left( {\frac{{{d_{j,1 }}}}{T}} \right)}}^2}(T-1)} \right)}}}}} \right)}^2} $$

Now notice that:

$$ f_{{t\geq 2}}^{** }(.)={{\left( {\begin{array}{*{20}c} {\frac{{-\frac{{{d_{i,1 }}}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{i,1 }}-\frac{{{d_{i,1 }}}}{T}} \right)}}^2}+{{{\left( {\frac{{{d_{i,1 }}}}{T}} \right)}}^2}\left( {T-1} \right)} \right)}}}}-} \\ {-\frac{{-\frac{{{d_{j,1 }}}}{T}}}{{\sqrt{{\frac{1}{T}\left( {{{{\left( {{d_{j,1 }}-\frac{{{d_{j,1 }}}}{T}} \right)}}^2}+{{{\left( {\frac{{{d_{j,1 }}}}{T}} \right)}}^2}(T-1)} \right)}}}}} \\ \end{array}} \right)}^2} $$

This simplifies to:

$$ f_{{t\geq 2}}^{** }(.)=\frac{{{T^2}}}{{{{{\left( {T-1} \right)}}^2}}}\frac{{{{{\left( {{d_{i,1 }}\sqrt{{\frac{1}{{{T^2}}}\left( {T-1} \right)d_{j,1}^2}}-{d_{j,1 }}\sqrt{{\frac{1}{{{T^2}}}\left( {T-1} \right)d_{i,1}^2}}} \right)}}^2}}}{{d_{i,1}^2d_{j,1}^2}}= $$
$$ =\frac{{{T^2}}}{{{{{\left( {T-1} \right)}}^2}}}\frac{{{{{\left( {{d_{i,1 }}\left| {{d_{j,1 }}} \right|\sqrt{{\frac{1}{{{T^2}}}\left( {T-1} \right)}}-{d_{j,1 }}\left| {{d_{i,1 }}} \right|\sqrt{{\frac{1}{{{T^2}}}\left( {T-1} \right)}}} \right)}}^2}}}{{d_{i,1}^2d_{j,1}^2}}= $$
$$ = \left\{ {\begin{array}{*{20}{c}} {0\;if\;{{d}_{{i,1}}}{{d}_{{j,1}}} > 0} \\ {\frac{4}{{T - 1\;}}\;if\;{{d}_{{i,1}}}{{d}_{{j,1}}} < 0} \\\end{array}} \right. $$

If d i,1 d j,1 > 0 the linear correlation index is equal to 1. This means that:

$$ {\rho_{{ij,t\geq 2}}}=1-\frac{1}{2}f_{{t\geq 2}}^{** }(.)=1 $$

Which is the maximum value for a given ρ ij,t as argued before.

But, if d i,1 d j,1 < 0 the linear correlation index is equal to −1 and

$$ {\rho_{{ij,t\geq 2}}}=1-\frac{1}{2}f_{{t\geq 2}}^{** }(.)=\frac{T-3 }{T-1 } $$

Then as \( {{\rho }_{{ij}}} = \frac{{\sum\nolimits_{{t = 1}}^{T} {{{\rho }_{{ij,t}}}} }}{T} = \frac{{{{\rho }_{{ij,1}}} + \sum\nolimits_{{t = 2}}^{T} {{{\rho }_{{ij,t}}}} }}{T} = \frac{{{{\rho }_{{ij,1}}} + \frac{{\left( {T - 1} \right)T - 3}}{{T - 1}}}}{T} \), which leads to:

$$ \frac{{{\rho_{ij,1 }}+T-3}}{T}=-1\mathop{\Leftrightarrow}\limits{\rho_{ij,1 }}=3-2T $$

So over the stationary points ρ ij,1 takes either the value 1 or 3−2T.

But a stationary point is just a necessary condition to reach a minimum/maximum in a point (its not sufficient). But this also means that if there is global minimum/maximum as the function is continuously differentiable over a open set the maximum/minimum cannot be obtained outside the set of stationary points.

So assuming that the global minimum/maximum exists, the maximum/minimum value the function takes over the set of stationary points is the maximum/minimum of the function. As it only takes two values, the biggest is the global maximum and the smallest is the global minimum. So in fact:

\( \max \left( {{\rho_{ij,t }}} \right)=1 \) and \( \min \left( {{\rho_{ij,t }}} \right)=3-2T \) .

Proposition 3: The purposed period-by-period index is invariable if we add to all elements of either series a constant, being them equal or different across the series

Proof: Lets define the constants by δ and ε, then we get:

$$ \begin{array}{*{20}c} {f_1}\left( {{d_{i,1 }}+\varepsilon,\ldots,{d_{i,T }}+\varepsilon, {d_{j,1 }}+\delta,\ldots,{d_{j,T }}+\delta } \right)= \hfill \\ ={{\left( {\frac{{{d_{i,1 }}+\varepsilon -\overline{{{d_i}+\varepsilon }}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }}+\varepsilon -\overline{{{d_i}+\varepsilon }}} \right)}}^2}}}}}-\frac{{{d_{j,1 }}+\delta -\overline{{{d_j}+\delta }}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }}+\delta -\overline{{{d_j}+\delta }}} \right)}}^2}}}}}} \right)}^2}= \hfill \\ ={{\left( {\frac{{{d_{i,1 }}+\varepsilon - {{\overline{d}}_i} - \varepsilon }}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }}+\varepsilon - {{\overline{d}}_i} - \varepsilon } \right)}}^2}}}}} - \frac{{{d_{j,1 }}+\delta - {{\overline{d}}_j} - \delta }}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }}+\delta - {{\overline{d}}_j} - \delta } \right)}}^2}}}}}} \right)}^2}= \hfill \\ ={{\left( {\frac{{{d_{i,1 }} - {{\overline{d}}_i}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{i,t }} - {{\overline{d}}_i}} \right)}}^2}}}}} - \frac{{{d_{j,1 }} - {{\overline{d}}_j}}}{{\sqrt{{\frac{1}{T}\mathop{\sum}\nolimits_{t=1}^T{{{\left( {{d_{j,t }} - {{\overline{d}}_j}} \right)}}^2}}}}}} \right)}^2}={f_1}({d_{i,1 }},{d_{i,2 }},\ldots,{d_{i,T }},{d_{j,1 }},{d_{j,2 }},\ldots,{d_{j,T }}) \hfill \\\end{array} $$

Appendix B

Table 1 Country list and classification

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerqueira, P.A. A closer look at the world business cycle synchronization. Int Econ Econ Policy 10, 349–363 (2013). https://doi.org/10.1007/s10368-013-0233-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10368-013-0233-z

Keywords

Navigation