Skip to main content
Log in

Chondrosis of the disc – risk factor for osteoporotic vertebral fractures (biomechanical analysis)

Chondrose der Bandscheibe – ein Risikofaktor für osteoporotische Wirbelfrakturen (biomechanische Analyse und Lösungsansatz)

  • Original article
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Mittels der biomechanischen Analyse eröffnen wir in unserem Artikel eine neue Perspektive auf die pathologischen Beziehungen zwischen den elementaren, motorischen sowie funktionellen Segmenten der Wirbelsäule (Wirbel – Bandscheibe – Wirbel), welche das Frakturrisiko der Wirbel erhöhen. Wir klassifizieren diese pathologischen Beziehungen wie folgt: 1. Degenerative Veränderungen der Bandscheibe (Chondrose), 1a) Senkung der Bandscheibenelastizität, 1b) Steigerung der Spannung im Druck und Zug in der Bandscheibe 2. Osteoporose der Wirbel, 2a) Abnahme der Elastizität und Festigkeit der Wirbel, 2b) Das Phänomen der lokal erhöhten Druckspannung im Bereich des Deckplattenbruches. Da diese Risikofaktoren beeinflussbare Faktoren sind, empfehlen wir präventive Maßnahmen. Im Hinblick auf die osteologische Praxis schlagen wir vor, im Röntgenbild der Wirbelsäule eine Auswertung der chondrotischen Bandscheiben vorzunehmen und so Risikowirbel für die Entstehung von Infraktionen in der Wirbeldeckplatte zu identifizieren.

Summary

Based on biomechanical analysis, we present an until now unrecognised new view on pathological interactive relations in basic functional motor segments of the spine (vertebra – disc – vertebra), elevating the risk of osteoporotic vertebral fractures. They are classified as follows: 1. Degenerative alterations of intervertebral disc (chondrosis); 1a) decrease of intervertebral disc viscoelasticity; 1b) increase of compressive and tensile stress in the intervertebral disc. Loading the spine increases the compressive and tensile stress in the disc, afflicted by chondrosis, beyond physiological values. This increase conditions the non-physiological elevation of reaction compression forces in adjacent vertebrae, representing a fracture risk for endplates of these vertebrae. 2. Osteoporosis of vertebrae; 2a) decrease of vertebra elasticity and strength; 2b) phenomenon of local elevated compressive stress in the vertebra fracture site. In the vertebral body endplate infraction or fracture site develop a locus minoris of resistance and it contributes to the progression of breaking the vertebra and its whole compression by loading the spine with compressive force. With regard to the fact that above-mentioned risk factors are influenceable, we suggest preventive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Wendlová J. Bone quality. Elasticity and strength. Bratisl lek listy, 109: 383–386, 2008

    PubMed  Google Scholar 

  • Lakes R. Viskoelastic solids, 1st ed. University Press, Cambridge, pp 36–39, 2009

    Google Scholar 

  • Adams MA, Mc Nally DS, Dolan P. Stress disturbations inside intervertebral disc. J Bone Jt Surg, 78B: 965–972, 1996

    Article  Google Scholar 

  • Brincman P, Frobin W, Hierholzer E, et al. Deformation of the vertebral end – plate under axial loading of the spine. Spine, 8: 851–856, 1983

    Article  Google Scholar 

  • Cannella M, Arthur A, Allen S, et al. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. J Biomech, 41: 2104–2111, 2008

    Article  PubMed  Google Scholar 

  • Horst M, Brinckmann P. Measurement of the distribution of axial stress on the endplate of the vertebral body. Spine, 6: 21–32, 1981

    Article  Google Scholar 

  • Guerin HA, Elliott DM. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech, 39: 1410–1418, 2006

    Article  PubMed  Google Scholar 

  • Colombini A, Lombardi G, Corsi MM, et al. Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol, 40: 837–842, 2008

    Article  CAS  PubMed  Google Scholar 

  • Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech, 39: 2484–2490, 2006

    Article  PubMed  Google Scholar 

  • Kim PK, Branch CL Jr. The lumbar degenerative disc: confusion, mechanics, management. Clin Neurosurg, 53: 18–25, 2006

    PubMed  Google Scholar 

  • Tsantrizos A, Ito K, Aebi M, et al. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine, 30: 2129–2137, 2005

    Article  PubMed  Google Scholar 

  • White AA, Panjabi MM. Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia, pp 125–129, 1990

    Google Scholar 

  • Homminga J, Mccreadie BR, Weinans H, et al. The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech, 36: 1461–1467, 2003

    Article  PubMed  Google Scholar 

  • Einhorn TA. The structural properties of normal and osteoporotic bone. Instruct Course Lect, 52: 533–539, 2003

    Google Scholar 

  • Wendlová J. Osteoporoza. Pohybova liečba (Osteoporosis. Kinesitherapy), 1st ed. Sanoma Magazines Slovakia, Bratislava, pp 50–52, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Wendlová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendlová, J. Chondrosis of the disc – risk factor for osteoporotic vertebral fractures (biomechanical analysis). Wien Med Wochenschr 160, 464–469 (2010). https://doi.org/10.1007/s10354-010-0823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-010-0823-0

Schlüsselwörter

Keywords

Navigation