Skip to main content
Log in

Diabetische Herzinsuffizienz

Heart failure in diabetes

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Interactions of glucose metabolism and chronic heart failure have been confirmed by many epidemiologic studies. The association of HbA1c with an increasing risk of heart failure clearly underlines the connection between both diseases. Coronary artery disease (CAD), hypertension and diabetic cardiomyopathy are long-term complications of diabetes mellitus, resulting in diabetic heart failure. Dysfunction of many regulation systems leads to specific diabetic cardiomyopathy, which has been firstly described by Rubler. A reduction in the cardiac expression of the Na-Ca exchanger pump and SERCA2a protein results in an imbalance in cardiac calcium handling. The overactive renin angiotensin aldosteron system (RAAS) also contributes to the impairment of myocardial function. Hyperlipidaemia, hpyerinsulinaemia and hyperglycaemia directly trigger diabetic cardiomyopathy. Generally chronic heart failure is a clinical diagnosis verified by blood tests like NT-proBNP and cardiac ultrasound. Recommendations on treatment of diabetic heart failure are based on subgroup analysis of the large heart failure trials.

Zusammenfassung

Epidemiologische Daten belegen die wechselseitige Beeinflussung von chronischer Herzinsuffizienz (CHF) und Diabetes mellitus. So ist ein Anstieg des HbA1c mit einem gesteigerten Risiko an einer Herzinsuffizienz zu erkranken verbunden. Koronare Herzkrankheit (KHK), Hypertonie und diabetische Kardiomyopathie sind Spätfolgen des Diabetes, deren gemeinsame Endstrecke die diabetische Herzinsuffizienz darstellt. Das spezifische Krankheitsbild der diabetischen Kardiomyopathie wurde von Rubler erstbeschrieben und ist das Endprodukt zahlreicher Störungen verschiedenster Systeme. So ist beispielsweise die kardiale Expression des Natrium-Kalziumaustauschers und des SERCA2a Proteins reduziert, was eine gestörte myokardiale Kalziumhomöostase zur Folge hat. Auch das überaktive Renin-Angiotensin-Aldosteronsystem (RAAS) spielt eine bedeutende Rolle in der Pathogenese der diabetischen Herzinsuffizienz. Hyperlipidämie, Hyperinsulinämie sowie Hypgerglykämie sind Stoffwechselstörungen, die ebenfalls die Entstehung der diabetische Kardiomyopathie begünstigen. Generell ist die Herzinsuffizienz eine klinische Diagnose, die mit Hilfe von Labortests wie dem NT-proBNP, aber auch apparativ verifiziert werden muss. Die derzeitigen Therapieempfehlungen beruhen auf Subgruppenanalysen der großen Herzinsuffizienzstudien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Coughlin SS. Diabetes mellitus and risk of idiopathic dilated cardiomyopathy. The Washington, DC dilated cardiomyopathy study. Ann Epidemiol, 4: 67–74, 1994

    PubMed  CAS  Google Scholar 

  • Clodi M, Resl M, Stelzeneder D, Pacini G, Tura A, Mörtl D, Struck J, Morgenthaler NG, Bergmann A, Riedl M, Anderwald-Stadler M, Luger A, Pacher R, Hülsmann M. Interactions of glucose metabolism and chronic heart failure. Exp Clin Endocrinol Diabetes, 2008 Sept. 30. [Epub ahead of print]

  • Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med, 316: 1429–1435, 1987

    Google Scholar 

  • Shindler DM, Kostis JB, Yusuf S, Quinones MA, Pitt B, Stewart D, Pinkett T, Ghali JK, Wilson AC. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol, 77: 1017–1020, 1996

    Article  PubMed  CAS  Google Scholar 

  • Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med, 325: 293–302, 1991

    Google Scholar 

  • Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol, 35: 1628–1637, 2000

    Article  PubMed  CAS  Google Scholar 

  • Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med, 342: 145–153, 2000

    Article  PubMed  CAS  Google Scholar 

  • Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes, 23: 105–111, 1974

    PubMed  CAS  Google Scholar 

  • Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care, 27: 1879–1884, 2004

    Article  PubMed  Google Scholar 

  • Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, Selby JV. Glycemic control and heart failure among adult patients with diabetes. Circulation, 103: 2668–2673, 2001

    PubMed  CAS  Google Scholar 

  • Cohn JN, Bristow MR, Chien KR, Colucci WS, Frazier OH, Leinwand LA, Lorell BH, Moss AJ, Sonnenblick EH, Walsh RA, Mockrin SC, Reinlib L. Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation, 95: 766–770, 1997

    PubMed  CAS  Google Scholar 

  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care, 16: 434–444, 1993

    Article  PubMed  CAS  Google Scholar 

  • Wilson PW. Diabetes mellitus and coronary heart disease. Endocrinol Metab Clin North Am, 30: 857–881, 2001

    Article  PubMed  CAS  Google Scholar 

  • Lteif AA, Mather KJ, Clark CM. Diabetes and heart disease an evidence-driven guide to risk factors management in diabetes. Cardiol Rev, 11: 262–274, 2003

    Article  PubMed  Google Scholar 

  • Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension, 37: 1053–1059, 2001

    PubMed  CAS  Google Scholar 

  • Fisher M. Diabetes and atherogenesis. Heart, 90: 336–340, 2004

    Article  PubMed  Google Scholar 

  • Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation, 100: 1134–1146, 1999

    PubMed  CAS  Google Scholar 

  • Haffner SJ, Cassells H. Hyperglycemia as a cardiovascular risk factor. Am J Med, 115(Suppl 8A): 6S–11S, 2003

    Article  PubMed  CAS  Google Scholar 

  • Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med, 339: 229–234, 1998

    Article  PubMed  CAS  Google Scholar 

  • Marwick TH. Diabetic heart disease. Heart, 92: 296–300, 2006

    PubMed  CAS  Google Scholar 

  • De Groote P, Lamblin N, Mouquet F, Plichon D, McFadden E, Van Belle E, Bauters C. Impact of diabetes mellitus on long-term survival in patients with congestive heart failure. Eur Heart J, 25: 656–662, 2004

    Article  PubMed  Google Scholar 

  • Masoudi FA, Inzucchi SE. Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol, 99: 113B–132B, 2007

    Article  PubMed  CAS  Google Scholar 

  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol, 30: 595–602, 1972

    Article  PubMed  CAS  Google Scholar 

  • Fein FS. Diabetic cardiomyopathy. Diabetes Care, 13: 1169–1179, 1990

    Article  PubMed  CAS  Google Scholar 

  • Bell DS. Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care, 18: 708–714, 1995

    Article  PubMed  CAS  Google Scholar 

  • Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care, 24: 5–10, 2001

    Article  PubMed  CAS  Google Scholar 

  • Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology, 98: 33–39, 2002

    Article  PubMed  CAS  Google Scholar 

  • Endoh M. Signal transduction and Ca2+ signaling in intact myocardium. J Pharmacol Sci, 100: 525–537, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cesario DA, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol Metab Clin North Am, 35: 601–610, ix–x, 2006

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q. Decreased cardiac sarcoplasmic reticulum Ca2+-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem, 62: 1–8, 2006

    Article  PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Tahiliani AG, Vadlamudi RV, Katz S, McNeill JH. Cardiac sarcoplasmic reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol, 245: H969–H976, 1983

    PubMed  CAS  Google Scholar 

  • Pierce GN, Dhalla NS. Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol, 13: 1063–1069, 1981

    Article  PubMed  CAS  Google Scholar 

  • Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gómez AM. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes, 55: 608–615, 2006

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M. Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. J Physiol, 527 Pt 1: 85–94, 2000

    Article  PubMed  CAS  Google Scholar 

  • Kashihara H, Shi ZQ, Yu JZ, McNeill JH, Tibbits GF. Effects of diabetes and hypertension on myocardial Na+-Ca2+ exchange. Can J Physiol Pharmacol, 78: 12–19, 2000

    Article  PubMed  CAS  Google Scholar 

  • Belke DD, Swanson EA, Dillmann WH. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes, 53: 3201–3208, 2004

    Article  PubMed  CAS  Google Scholar 

  • Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes, 51: 1166–1171, 2002

    Article  PubMed  CAS  Google Scholar 

  • Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev, 25: 543–567, 2004

    Article  PubMed  CAS  Google Scholar 

  • Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res, 40: 239–247, 1998

    Article  PubMed  CAS  Google Scholar 

  • Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P. Myocardial cell death in human diabetes. Circ Res, 87: 1123–1132, 2000

    PubMed  CAS  Google Scholar 

  • Rösen R, Rump AF, Rösen P. The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia, 38: 509–517, 1995

    Article  PubMed  Google Scholar 

  • Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M, De Angelis N, Ghezzi P, Latini R, Masson S. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci, 79: 121–129, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol, 48: 1688–1697, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med, 41: 851–861, 2006

    Article  PubMed  CAS  Google Scholar 

  • Barouch LA, Berkowitz DE, Harrison RW, O'Donnell CP, Hare JM. Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation, 108: 754–759, 2003

    Article  PubMed  CAS  Google Scholar 

  • Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA, 97: 1784–1789, 2000

    Article  PubMed  CAS  Google Scholar 

  • Wold LE, Ren J. Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism. Biochem Biophys Res Commun, 318: 1066–1071, 2004

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 51: 1938–1948, 2002

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med, 46: 223–234, 1995

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55: 798–805, 2006

    Article  PubMed  CAS  Google Scholar 

  • Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol, 35: 615–621, 2003

    Article  PubMed  CAS  Google Scholar 

  • Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res, 98: 596–605, 2006

    Article  PubMed  CAS  Google Scholar 

  • Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest, 106: 171–176, 2000

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum MJ. Turning down insulin signaling. J Clin Invest, 108: 655–659, 2001

    PubMed  CAS  Google Scholar 

  • Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest, 108: 437–446, 2001

    PubMed  CAS  Google Scholar 

  • Ilercil A, Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Howard BV. Associations of insulin levels with left ventricular structure and function in American Indians: the strong heart study. Diabetes, 51: 1543–1547, 2002

    Article  PubMed  CAS  Google Scholar 

  • Iacobellis G, Ribaudo MC, Zappaterreno A, Vecci E, Tiberti C, Di Mario U, Leonetti F. Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity. Obes Res, 11: 518–524, 2003

    Article  PubMed  Google Scholar 

  • McNulty PH. Insulin resistance and cardiac mass: the end of the beginning? Obes Res, 11: 507–508, 2003

    Article  PubMed  Google Scholar 

  • Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord, 24(Suppl 4): S28–S32, 2000

    PubMed  CAS  Google Scholar 

  • Halse R, Pearson SL, McCormack JG, Yeaman SJ, Taylor R. Effects of tumor necrosis factor-alpha on insulin action in cultured human muscle cells. Diabetes, 50: 1102–1109, 2001

    Article  PubMed  CAS  Google Scholar 

  • Zhang DX, Fryer RM, Hsu AK, Zou AP, Gross GJ, Campbell WB, Li PL. Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Res Cardiol, 96: 267–274, 2001

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404: 787–790, 2000

    Article  PubMed  CAS  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest, 112: 1049–1057, 2003

    PubMed  CAS  Google Scholar 

  • Boudina S, Abel ED. Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda), 21: 250–258, 2006

    CAS  Google Scholar 

  • Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res, 94: 525–533, 2004

    Article  PubMed  CAS  Google Scholar 

  • An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol, 291: H1489–H1506, 2006

    Article  PubMed  CAS  Google Scholar 

  • Pierce GN, Dhalla NS. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol, 1: 48–54, 1985

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Konno N, Kako KJ. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res, 26: 409–414, 1992

    Article  PubMed  CAS  Google Scholar 

  • Lashin O, Romani A. Hyperglycemia does not alter state 3 respiration in cardiac mitochondria from type-I diabetic rats. Mol Cell Biochem, 267: 31–37, 2004

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab, 287: E896–E905, 2004

    Article  PubMed  CAS  Google Scholar 

  • Nishio Y, Kanazawa A, Nagai Y, Inagaki H, Kashiwagi A. Regulation and role of the mitochondrial transcription factor in the diabetic rat heart. Ann NY Acad Sci, 1011: 78–85, 2004

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol, 289: H768–H776, 2005

    Article  PubMed  CAS  Google Scholar 

  • Metzler B, Schocke MF, Steinboeck P, Wolf C, Judmaier W, Lechleitner M, Lukas P, Pachinger O. Decreased high-energy phosphate ratios in the myocardium of men with diabetes mellitus type I. J Cardiovasc Magn Reson, 4: 493–502, 2002

    Article  PubMed  Google Scholar 

  • Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation, 107: 3040–3046, 2003

    Article  PubMed  CAS  Google Scholar 

  • Savabi F. Mitochondrial creatine phosphokinase deficiency in diabetic rat heart. Biochem Biophys Res Commun, 154: 469–475, 1988

    Article  PubMed  CAS  Google Scholar 

  • Awaji Y, Hashimoto H, Matsui Y, Kawaguchi K, Okumura K, Ito T, Satake T. Isoenzyme profiles of creatine kinase, lactate dehydrogenase, and aspartate aminotransferase in the diabetic heart: comparison with hereditary and catecholamine cardiomyopathies. Cardiovasc Res, 24: 547–554, 1990

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Chow SS, Anderson RH, Gosling JA. Autonomic innervation of the human cardiac conduction system: changes from infancy to senility – an immunohistochemical and histochemical analysis. Anat Rec, 264: 169–182, 2001

    Article  PubMed  CAS  Google Scholar 

  • Fonarow GC, Srikanthan P. Diabetic cardiomyopathy. Endocrinol Metab Clin North Am, 35: 575–599, ix, 2006

    Article  PubMed  CAS  Google Scholar 

  • Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation, 115: 387–397, 2007

    Article  PubMed  Google Scholar 

  • Mustonen J, Uusitupa M, Länsimies E, Vainio P, Laakso M, Pyörälä K. Autonomic nervous function and its relationship to cardiac performance in middle-aged diabetic patients without clinically evident cardiovascular disease. J Intern Med, 232: 65–72, 1992

    Article  PubMed  CAS  Google Scholar 

  • Didangelos TP, Arsos GA, Karamitsos DT, Athyros VG, Karatzas ND. Left ventricular systolic and diastolic function in normotensive type 1 diabetic patients with or without autonomic neuropathy: a radionuclide ventriculography study. Diabetes Care, 26: 1955–1960, 2003

    Article  PubMed  Google Scholar 

  • Kahn JK, Zola B, Juni JE, Vinik AI. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardiol, 7: 1303–1309, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation, 59: 8–13, 1979

    PubMed  CAS  Google Scholar 

  • Scognamiglio R, Casara D, Avogaro A. Myocardial dysfunction and adrenergic innervation in patients with type 1 diabetes mellitus. Diabetes Nutr Metab, 13: 346–349, 2000

    PubMed  CAS  Google Scholar 

  • Monteagudo PT, Moisés VA, Kohlmann O Jr, Ribeiro AB, Lima VC, Zanella MT. Influence of autonomic neuropathy upon left ventricular dysfunction in insulin-dependent diabetic patients. Clin Cardiol, 23: 371–375, 2000

    Article  PubMed  CAS  Google Scholar 

  • Staudt A, Landsberger M, Staudt Y, Felix SB. Cytokines – causes, players or bystanders in heart failure. Herz, 27: 691–698, 2002

    Article  PubMed  Google Scholar 

  • Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93: 704–711, 1996

    PubMed  CAS  Google Scholar 

  • Chiurchiù V, Izzi V, D'Aquilio F, Carotenuto F, Di Nardo P, Baldini PM. Brain Natriuretic Peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages. Regul Pept, 148: 26–32, 2008

    Article  PubMed  CAS  Google Scholar 

  • Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH, Hildebrandt P, Keren A, Motro M, Moyé LA, Otterstad JE, Pratt CM, Ponikowski P, Rouleau JL, Sestier F, Winkelmann BR, Young JB; Advanced Chronic Heart Failure CLinical Assessment of Immune Modulation Therapy Investigators. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet, 371: 228–236, 2008

    Article  PubMed  CAS  Google Scholar 

  • Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol, 50: 2357–2368, 2007

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Yoshida J, Yamamoto K, Sakata Y, Mano T, Akehi N, Hori M, Lim YJ, Mishima M, Masuyama T. Elevation of plasma brain natriuretic peptide is a hallmark of diastolic heart failure independent of ventricular hypertrophy. J Am Coll Cardiol, 43: 55–60, 2004

    Article  PubMed  CAS  Google Scholar 

  • Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ, 330: 625, 2005

    Article  PubMed  CAS  Google Scholar 

  • Huelsmann M, Neuhold S, Strunk G, Moertl D, Berger R, Prager R, Abrahamian H, Riedl M, Pacher R, Luger A, Clodi M. NT-proBNP has a high negative predictive value to rule out short-term cadiovascular events in patients with diabetes mellitus. Eur Heart J, 29: 2259–2264, 2008

    Article  PubMed  CAS  Google Scholar 

  • Vila G, Resl M, Stelzeneder D, Struck J, Maier C, Riedl M, Hülsmann M, Pacher R, Luger A, Clodi M. Plasma NT-proBNP increases in response to LPS administration in healthy men. J Appl Physiol, 105: 1741–1745, 2008

    Article  PubMed  CAS  Google Scholar 

  • Neuhold S, Hülsmann M. Herzinsuffizienz. Wien Klin Wochenschr Educ, 3: 17–33, 2008

    Article  Google Scholar 

  • Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, Tavazzi L, Smiseth OA, Gavazzi A, Haverich A, Hoes A, Jaarsma T, Korewicki J, Lévy S, Linde C, Lopez-Sendon JL, Nieminen MS, Piérard L, Remme WJ. Task force for the diagnosis and treatment of chronic heart failure of the European society of cardiology. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): the task force for the diagnosis and treatment of chronic heart failure of the European society of cardiology. Eur Heart J, 26: 1115–1140, 2005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Clodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resl, M., Hülsmann, M., Pacher, R. et al. Diabetische Herzinsuffizienz. Wien Med Wochenschr 159, 134–140 (2009). https://doi.org/10.1007/s10354-009-0645-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-009-0645-0

Keywords

Schlüsselwörter

Navigation