Skip to main content
Log in

MDM2 mRNA Expression in the p53 Pathway May Predict the Potential of Invasion and Liver Metastasis in Colorectal Cancer

  • Original Contribution
  • Published:
Diseases of the Colon & Rectum

Abstract

Purpose

The p53/MDM2/p14ARF pathway is one of the major signaling cascades involved in the regulation of apoptosis. Although many tumors have been reported to show disruption of the p53/MDM2/p14ARF pathway, few studies have examined p53, MDM2, and p14ARF simultaneously in colorectal carcinoma. The present study was undertaken to clarify whether correlations exist among MDM2, p53, and p14ARF in colorectal cancer.

Methods

We determined the presence of mutations in the p53 gene, MDM2 expression, and methylation status of the p14ARF in 97 primary colorectal carcinoma specimens. Associations with survival and clinicopathologic factors were investigated.

Results

At least one abnormality of these three molecules was found in 82 (84 percent) tumors. We observed a significant inverse association between MDM2 expression and tumor invasion (P = 0.01). Furthermore, the presence of liver metastasis was also significantly associated with low MDM2 expression (P = 0.02).

Conclusions

The results suggest that disruption of the p53/MDM2/p14ARF pathway may frequently participate in colonic carcinogenesis and that MDM2 expression status may be a factor in the prediction of potential invasion and liver metastasis of colorectal carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T. Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res 2003;9:4884–90.

    PubMed  CAS  Google Scholar 

  2. Steele RJ, Thompson AM, Hall PA. The p53 tumour suppressor gene. Br J Surg 1998;85:1460–7.

    Article  PubMed  CAS  Google Scholar 

  3. Soussi T, Caron de Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 1990;5:945–52.

    PubMed  CAS  Google Scholar 

  4. Dale AB, Lothe RA, Meling GI, Hainaut P, Rognum T, Skovlund E. TP53 and long-term progression in colorectal cancer: mutations in the L3 zinc-binding domain predict survival. Clin Cancer Res 1998;4:203–10.

    Google Scholar 

  5. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–10.

    Article  PubMed  CAS  Google Scholar 

  6. Iacopetta B. TP53 mutation in colorectal cancer. Hum Mutat 2003;21:271–6.

    Article  PubMed  CAS  Google Scholar 

  7. Snyder LC, Feng TY, Francke U, George DL. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 1987;13:235–44.

    Article  Google Scholar 

  8. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res 1998;26:3453–9.

    Article  PubMed  CAS  Google Scholar 

  9. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995;83:993–1000.

    Article  PubMed  CAS  Google Scholar 

  10. Hibi K, Nakayama H, Koike M, Kasai Y, Ito K, Akiyama S, Nakao A. Colorectal cancers with both p16 and p14 methylation show invasive characteristics. Jpn J Cancer Res 2002;93:883–7.

    PubMed  CAS  Google Scholar 

  11. Greene FL, Page DL, Fleming ID. AJCC cancer staging manual. 6th ed. New York: Springer-Verlag, 2002.

    Google Scholar 

  12. Pinyol M, Hernandes L, Martinez A, et al. INK4a/ARF locus alterations in human non-Hodgkin’s lymphomas mainly occur in tumors with wild-type p53 gene. Am J Pathol 2000;156:1987–96.

    PubMed  CAS  Google Scholar 

  13. Dowell SP, Wilson PO, Derias NW, Lane P, Hall PA. Clinical utility of the immunocytochemical detection of p53 protein in cytological specimens. Cancer Res 1994;54:2914–21.

    PubMed  CAS  Google Scholar 

  14. Inoue H, Kimura A, Tuji T. Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int 2002;130:127–32.

    Article  PubMed  CAS  Google Scholar 

  15. Ishida K, Zhu BL, Maeda H. Novel approach to quantitative reverse transcription PCR assay of mRNA component in autopsy materials using the TaqMan fluorogenic detection system: dynamics of pulmonary surfactant apoprotein A. Forensic Sci Int 2000;113:127–31.

    Article  PubMed  CAS  Google Scholar 

  16. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996;93:9821–6.

    Article  PubMed  CAS  Google Scholar 

  17. Onel K, Cardo CC. MDM2 and prognosis. Mol Cancer Res 2004;2:1–8.

    PubMed  CAS  Google Scholar 

  18. Wurl P, Meye A, Schmidt H, et al. High prognostic significance of Mdm2/p53 co-overexpression in soft tissue sarcomas of the extremities. Oncogene 1998;16:1183–5.

    Article  PubMed  CAS  Google Scholar 

  19. Schiebe M, Ohneseit P, Hoffmann W, Meyemann R, Rodemann HP, Bamberg M. Analysis of mdm2 and p53 gene alterations in glioblastomas and its correlation with clinical factors. J Neurooncol 2000;49:197–203.

    Article  PubMed  CAS  Google Scholar 

  20. Gustafsson B, Axelsson B, Gustafsson B, Christensson B, Winiarski J. MDM2 and p53 in childhood acute lymphoblastic leukemia: higher expression in childhood leukemias with poor prognosis compared to long-term survivors. Pediatr Hematol Oncol 2001;18:497–508.

    Article  PubMed  CAS  Google Scholar 

  21. Lukas J, Gao DQ, Kashmeshian M, et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res 2001;61:3212–9.

    PubMed  CAS  Google Scholar 

  22. Hori M, Shimazaki J, Inagawa S, Itabashi M, Hori M. Overexpression of MDM2 oncoprotein correlates with possession of estrogen receptor alpha and lack of MDM2 mRNA splice variants in human breast cancer. Breast Cancer Res Treat 2002;71:77–83.

    Article  PubMed  CAS  Google Scholar 

  23. Higashiyama M, Doi O, Kodama K, et al. MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br J Cancer 1997;75:1302–8.

    PubMed  CAS  Google Scholar 

  24. Polsky D, Bastian BC, Hazan C, et al. HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma. Cancer Res 2001;61:7642–6.

    PubMed  CAS  Google Scholar 

  25. Polsky D, Melzer K, Hazan C, et al. HDM2 protein overexpression and prognosis in primary malignant melanoma. J Natl Cancer Inst 2002;94:1803–6.

    PubMed  CAS  Google Scholar 

  26. Millon R, Muller D, Schultz I, et al. Loss of MDM2 expression in human head and neck squamous cell carcinomas and clinical significance. Oral Oncol 2001;37:620–31.

    Article  PubMed  CAS  Google Scholar 

  27. Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res 2003;1:993–1000.

    PubMed  CAS  Google Scholar 

  28. Evans SC, Viswanathan M, Grier JD, Narayama M, El-Naggar AK, Lozano G. An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 2001;20:4041–9.

    Article  PubMed  CAS  Google Scholar 

  29. Girnita L, Girnita A, Larsson O. Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci USA 2003;100:8247–57.

    Article  PubMed  CAS  Google Scholar 

  30. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005;20:539–50.

    Article  PubMed  CAS  Google Scholar 

  31. Salcedo A, Mayor F Jr, Penela P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 2006;25:4752–62.

    Article  PubMed  CAS  Google Scholar 

  32. Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 2000;60:129–33.

    PubMed  CAS  Google Scholar 

  33. Esteller M, Cardo CC, Corn PG, et al. p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 2001;61:2816–21.

    PubMed  CAS  Google Scholar 

  34. Esteller M, Ganzalez S, Risques RA, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol 2001;19:299–304.

    PubMed  CAS  Google Scholar 

  35. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001;490:117–22.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001;20:1803–15.

    Article  PubMed  CAS  Google Scholar 

  37. Tannapfel A, Busse C, Weinans L, et al. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene 2001;20:7104–9.

    Article  PubMed  CAS  Google Scholar 

  38. Fulci G, Labuhn M, Maier D, et al. p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 2000;19:3816–22.

    Article  PubMed  CAS  Google Scholar 

  39. Gazzeri S, Valle VD, Chaussade L, Brambilla C, Larsen CJ, Brambilla E. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 1998;58:3926–31.

    PubMed  CAS  Google Scholar 

  40. Iida S, Akiyama Y, Nakagima T, et al. Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer 2000;87:654–8.

    Article  PubMed  CAS  Google Scholar 

  41. Eischen CM, Alt JR, Wang P. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Oncogene 2004;23:8931–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Sugihara M.D..

Additional information

Reprints are not available.

About this article

Cite this article

Kondo, I., Iida, S., Takagi, Y. et al. MDM2 mRNA Expression in the p53 Pathway May Predict the Potential of Invasion and Liver Metastasis in Colorectal Cancer. Dis Colon Rectum 51, 1395–1402 (2008). https://doi.org/10.1007/s10350-008-9382-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10350-008-9382-5

Key words

Navigation