Skip to main content
Log in

The sedimentary facies of Posidonia oceanica seagrass meadows from the central Mediterranean Sea

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Sedimentary facies of seven Posidonia oceanica meadows of western Mediterranean Sea were investigated. Five meadows are located in the Tyrrhenian coast, two are placed in the western coast of Sardinia and Corsica. These meadows develop on soft and hard substrates, often forming “mattes”, in areas characterized by different oceanography, morphology, and terrigenous inputs produced by coastal erosion and fluvial runoff. A total of five sedimentary facies have been recognized ranging from pure terrigenous to bioclastic: terrigenous sand to gravelly sand, bioclastic sands, skeletal gravelly sands, mixed siliciclastic–carbonate sands, well to moderately sorted skeletal siliciclastic sands. All of the sedimentary facies associated with P. oceanica are in the sand grain size. The gravelly fraction is generally subordinated and variable, whereas the muddy fraction is generally low. The very low frequencies of the muddy fraction can be attributed to re-suspension processes and to the lack of carbonate mud production. The rate of epiphytic carbonate production obtained by two of the investigated meadows averages 400 g m−2 year−1. This value is in the range of temperate Mediterranean as well as of tropical and subtropical seagrasses. The epiphytic carbonate production plus the calcareous biota living on seagrass substrate contributes to form mixed siliciclastic–carbonate sediments of the nearshore environment of the Mediterranean. Lastly, the carbonate production associated with seagrass was derived by biota belonging to the heterozoan assemblage, where aphotic organisms are dominant, together with oligophotic biota such as coralline algae and symbiont-bearing foraminifera. Consequently, in the well-illuminated seagrass settings, the prevalent skeletal assemblages is represented by the heterozoan association while the components of the photozoan assemblages are absent or subordinate. This a key point for the paleoenvironmental reconstruction of the photic zone in the fossil record. Because the skeletal components of many seagrass dwellers greatly contribute to the carbonate sediment production of photic shallow-water environments, the seagrass meadows became substantial places of carbonate production and C (organic and inorganic) sequestration during the Cenozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(images from Google Earth, modified)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbate E, Sagri M (1970) The eugeosynclinal sequence. Sed Geol 4:251–340

    Article  Google Scholar 

  • Andreucci S, Clemmensen LB, Murray AS, Pascucci V (2010) Middle to late Pleistocene coastal deposits of Alghero, northwest Sardinia (Italy): Chronology and evolution. Quat Int 222:3–16

    Article  Google Scholar 

  • Aringoli D, Coltorti M, D’orefice M, Dramis F, Federici PR, Foresi LM, Graciotti R, Iotti A, Molin P, Moretti S, Pappalardo M, Pierantoni PP, Pieruccini P, Ribolini A, Tarchiani U (2009) Carta geomorfologica dell’Arcipelago Toscano. Memorie Descrittive della Carta Geologica d’Italia 86:7–107

    Google Scholar 

  • ASTM D4373-14 (2014) Standard test method for rapid determination of carbonate content of soils. ASTM Int (West Conshohocken, PA). doi:10.1520/D4373-14

    Google Scholar 

  • Astraldi M, Gasparini GP, Sparnocchia S (1994) The seasonal and interannual variability in the Ligurian-Provençal basin. In: La Violette PE (eds) Seasonal and interannual variability of the western Mediterranean Sea. Coastal and estuarine studies, vol 46, pp 93–113

  • Beavington-Penney SJ, Wright VP, Woelkerling WmJ (2004) Recognising macrophyte vegetated environments in the rock record: a new criterion using ‘hooked’ forms of crustose coralline red algae. Sed Geol 166:1–9

    Article  Google Scholar 

  • Betzler C, Brachert TC, Nebelsick J (1997) The warm temperate carbonate province. A review of facies, zonations, and delimitations. Courier Forschungsinstitut Senckenberg 201:83–99

    Google Scholar 

  • Borg JA, Atrill MJ, Rowden AA, Schembri PJ, Jones MB (2005) Architectural characteristics of two bed types of the seagrass, Posidonia oceanica over different spatial scales. Estuar Coast Shelf Sci 62:667–678

    Article  Google Scholar 

  • Bosence DWJ (1989) Biogenic carbonate production in Florida Bay. Bull Mar Sci 44(1):419–433

    Google Scholar 

  • Bosence DWJ (1995) Anatomy of a recent biodetrital mud-mound, Florida Bay, USA. In: Monty CLV, Bosence DWJ, Bridges PH, Pratt BR (eds) Carbonate mud-mounds, their origin and evolution, vol 23. International Association of Sedimentologists, Special Publication, Oxford, pp 317–343

    Google Scholar 

  • Boudouresque CF, Jeudy De Grissac A (1983) L’herbier à Posidonia oceanica en Mediterranée: les interactions entre la plante et le sédiment. Journal de Recherche Océanographique 8:99–122

    Google Scholar 

  • Boudouresque CF, Meinesz A (1982) Découverte de l’herbier de Posidonies. Cahier Parc National de Port-Cros 4:1–79

    Google Scholar 

  • Brandano M (2003) Tropical/Subtropical Inner Ramp Facies in Lower Miocene “Calcari a Briozoi e Litotamni” of the Monte Lungo Area (Cassino Plain, Central Apennines, Italy). Bollettino Società Geologica Italiana 122:85–98

    Google Scholar 

  • Brandano M, Civitelli G (2007) Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: a modern example of mixed carbonate–siliciclastic sedimentation. Sed Geol 201:286–301

    Article  Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Pedley M, Matteucci R (2009) Facies analysis and palaeoenvironmental interpretation of the Late Oligocene Attard Member (Lower Coralline Limestone Formation), Malta. Sedimentology 56:1138–1158

    Article  Google Scholar 

  • Brandano M, Cuffaro M, Gaglianone G, Petricca P, Stagno V, Mateu-Vicens G (2016) Evaluating the role of seagrass in Cenozoic CO2 variations. Front Environ Sci 4:72. doi:10.3389/fenvs.2016.00072

    Article  Google Scholar 

  • Brasier MD (1975) An outline history of seagrass communities. Palaeontology 18:681–702

    Google Scholar 

  • Bricaud A, Bosc E, Antoine D (2002) Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sens Environ 81:163–178

    Article  Google Scholar 

  • Budillon G, Gasparini GP, Schroeder K (2009) Persistence of an eddy signature in the central Tyrrhenian basin. Deep-Sea Res II 56:713–724

    Article  Google Scholar 

  • Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep-Sea Res II 44:611–629

    Article  Google Scholar 

  • Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sed Geol 60:333–346

    Article  Google Scholar 

  • Chiocci FL, Orlando L (1996) Lowstand terraces on Tyrrhenian Sea steep continental slopes. Mar Geol 134:127–143

    Article  Google Scholar 

  • Civitelli G, Corda L (1993) The allochthonous succession of the Sabatini area. In: Di Filippo M (ed) Note illustrative della carta “Sabatini Volcanic Complex”, vol 114/11. Quaderni de “La Ricerca Scientifica”, CNR, Roma, pp 33–79

    Google Scholar 

  • Colantoni P, Gabbianelli G, Rizzo V, Piergiovanni A (1997) Prosecuzione a mare delle strutture deformative della Valle di Maratea (Basilicata) e recente evoluzione dell’antistante piattaforma continentale. Geografia Fisica e Dinamica Quaternaria 20:51–60

    Google Scholar 

  • De Falco G, Simeone S, Baroli M (2008) Management of beach-cast Posidonia oceanica seagrass on the Island of Sardinia (Italy, Western Mediterranean). J Coast Res 24:69–75

    Article  Google Scholar 

  • De Pippo T, Donadio C, Pennetta M (2004) Morphological control on sediment dispersal along the Southern Tyrrhenian coastal zones (Italy). Geol Romana 37:113–121

    Google Scholar 

  • Den Hartog C, Kuo L (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  Google Scholar 

  • Fazzini P, Gelmini R, Mantovani MP, Pellegrini M (1972) Geologia dei Monti della Tolfa (Lazio settentrionale; Provincia di Viterbo e Roma). Memorie della Società Geologica Italiana 11:65–144

    Google Scholar 

  • Fornós JJ, Ahr WM (1997) Temperate carbonates on a modern, low energy, isolated ramp: the Balearic platform, Spain. J Sediment Res 67:364–373

    Google Scholar 

  • Fornós JJ, Ahr WM (2006) Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls, vol 255. Geological Society of London, Special Publication, London, pp 121–135

    Google Scholar 

  • Frezza V, Mateu-Vicens G, Gaglianone G, Baldassarre A, Brandano M (2011) Mixed carbonate–siliciclastic sediments and benthic foraminiferal assemblages from Posidonia oceanica seagrass meadows of the central Tyrrhenian continental shelf (Latium, Italy). Ital J Geosci 130:352–369

    Google Scholar 

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Gaglianone G, Frezza V, Mateu-Vicens G, Brandano M (2014) Posidonia oceanica seagrass meadows facies from western Mediterranean Sea. Rend Online Soc Geol It 31(Suppl. 1):187

    Google Scholar 

  • Giraud G (1977) Essai de classement des herbiers de Posidonia oceanica (Linné) Delile. Bot Mar 20:487–491

    Article  Google Scholar 

  • Giresse P, Pascucci V, Lymer G, Gaullier V, Thinon I (2014) Processes controlling very low sedimentation rates on the continental slope of the Gonone-Orosei canyon system, NE Sardinia—terrestrial and oceanic significance. Geo-Mar Lett 34:483–498

    Article  Google Scholar 

  • Gobert S, Cambridge ML, Velimirov B, Pergent G, Lepoint G, Bouquegneau J-M, Dauby P, Pergent-Martini C, Walker DI (2006) Biology of Posidonia. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 387–408

    Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. Prepared by the UIMEP World Conservation Monitoring Centre. University of California Press, Berkeley, p 298

    Google Scholar 

  • Hemminga M, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge, p 298 (ISBN 9780511525551)

    Book  Google Scholar 

  • Hopkins TS (1999) The thermohaline forcing of the Gibraltar exchange. J Mar Syst 20:1–31

    Article  Google Scholar 

  • IAMC-CNR (2008) Carta dei fondali del Comune di Maratea. Unpublished thematic maps and technical reports

  • Ivany LC, Portell RW, Jones DS (1990) Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258

    Article  Google Scholar 

  • James NP, Bone Y (2007) A Late Pliocene-Early Pleistocene, inner shelf, subtropical, seagrass-dominated carbonate: Roe Calcarenite, Great Australian Bight, Western Australia. Palaios 22:343–359

    Article  Google Scholar 

  • James NP, Bone Y, Brown KM, Cheshire A (2009) Calcareous epiphyte production in cool-water carbonate seagrass depositional environments; Southern Australia. In: Perspectives in carbonate geology: a tribute to the career of Robert Nathan Ginsburg. Special Publication 41 of the IAS, pp 123–148

  • Johnson JH (1961) Limestone-building algae and algal limestones. Colorado School of Mines, Boulder, p 297

    Google Scholar 

  • Koch EW (1999) Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquat Bot 65:269–280

    Article  Google Scholar 

  • Koch EW, Ackerman JD, Verduin J, Van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 193–225

    Google Scholar 

  • Kovach WL (1987) Multivariate methods of analyzing paleoecological data. Paleontol Soc Spec Publ 3:72–104

    Google Scholar 

  • Kovach WL (1989) Comparisons of multivariate analytical techniques for use in pre-quaternary plant paleoecology. Rev Palaeobot Palynol 60:255–282

    Article  Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. Mar Micropaleontol 20:235–265

    Article  Google Scholar 

  • Lo Iacono C, Mateo MA, Gràcia E, Guasch L, Carbonell R, Serrano L, Serrano O, Dañobeitia J (2008) Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): implications for carbon sink estimates. Geophys Res Lett 35:18601

    Article  Google Scholar 

  • Lustrino M, Melluso L, Morra V (2002) The transition from alkaline to tholeiitic magmas: a case study from the Orosei-Dorgali Pliocene volcanic district (NE Sardinia, Italy). Lithos 63:83–113

    Article  Google Scholar 

  • Marani M, Taviani M, Trincardi F, Argnani A, Borsetti AM, Zitellini N (1986) Pleistocene progradation and post-glacial events of the NE Tyrrhenian Continental Shelf between the Tiber River delta and Capo Circeo. Memorie della Società Geologica Italiana 36:67–89

    Google Scholar 

  • Mateo MA, Romero J, Pérez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110

    Article  Google Scholar 

  • Mateu-Vicens G, Hallock P, Brandano M (2008a) A depositional model and paleoecological reconstruction of the Lower Tortonian distally steepened ramp of Menorca (Balearic Islands, Spain). Palaios 23:465–481

    Article  Google Scholar 

  • Mateu-Vicens G, Pomar L, Tropeano M (2008b) Architectural complexity of a carbonate transgressive systems tract induced by basement physiography. Sedimentology 55:1815–1848

    Article  Google Scholar 

  • Mateu-Vicens G, Box A, Deudero S, Rodríguez B (2010) Comparative analysis of epiphytic foraminifera in sediments colonised by seagrass Posidonia oceanica and invasive macroalgae Caulerpa spp. J Foramin Res 40:134–147

    Article  Google Scholar 

  • Mateu-Vicens G, Brandano M, Gaglianone G, Baldassarre A (2012) Seagrass-meadow sedimentary facies in a mixed siliciclastic–carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, Western Mediterranean). J Sediment Res 82:451–463

    Article  Google Scholar 

  • Mateu-Vicens G, Khokhlova A, Sebastián-Pastor T (2014) Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. J Foramin Res 44:325–339

    Article  Google Scholar 

  • Molinier R, Picard J (1952) Recherches sur les herbiers de phanérogames marines du littoral méditerranéen français. Annales de l’Institut océanographique 27:157–234

    Google Scholar 

  • Mount JF (1984) Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology 12:432–435

    Article  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdes L, Deyoung C, Fonseca L, Grimsditch G (2009) Blue carbon. A rapid response assessment. United Nations Environment Programme, in collaboration with the Food and Agriculture Organization and UNESCO.GRID-Arendal, Norway

    Google Scholar 

  • Nelsen JE Jr, Ginsburg RN (1986) Calcium carbonate production by epibionts on Thalassia in Florida Bay. J Sediment Petrol 56:622–628

    Google Scholar 

  • Pala D, Cossu A, Pischedda E, Pascucci V, Andreucci S, Ragazzola F, Demelas S, Sechi N (2009) Indagini preliminari su ripartizione e morfologia della prateria a Posidonia oceanica nella rada di Alghero. Biologia Marina Mediterranea 16:286–287

    Google Scholar 

  • Parker WC, Arnold AJ (1999) Quantitative methods of analysis in foraminiferal ecology. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic Publishers, Dordrecht, pp 71–89

    Chapter  Google Scholar 

  • Pergent G, Pergent-Martini C, Boudouresque CF (1995) Utilisation de l’herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée: Etat des connaissances. Mésogée 54:3–29

    Google Scholar 

  • Perry CT, Beavington-Penney SJ (2005) Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique. Sed Geol 174:161–176

    Article  Google Scholar 

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158:153–173

    Article  Google Scholar 

  • Pomar L, Obrador A, Westphal H (2002) Sub-wavebase cross-bedded grainstones on a distally steepened carbonate ramp, upper Miocene, Menorca, Spain. Sedimentology 49:139–169

    Article  Google Scholar 

  • Read JF (1974) Carbonate bank and wave-built platform sedimentation, Edel Province, Shark Bay, Western Australia. Mem Am Assoc Petrol Geol 22:1–60

    Google Scholar 

  • Rehault J-P, Boillot G, Mauffret A (1985) The western Mediterranean basin. In: Stanley DJ, Wezel FC (eds) Geological Evolution of Mediterranean basin (Raimondo Selli Commemorative Volume). Springer, New York, pp 101–129

    Chapter  Google Scholar 

  • Ribotti A, Puillat I, Sorgente R, Natale S (2004) Mesoscale circulation in the surface layer off the southern and western Sardinia Island in 2000–2002. Chem Ecol 20:345–363

    Article  Google Scholar 

  • Rossetti F, Faccenna C, Jolivet L, Funiciello R (1998) Structural evolution of the Giglio Island, Northern Tyrrhenian Sea (Italy). Memorie della Società Geologica Italiana 52:493–512

    Google Scholar 

  • Rossetti F, Faccenna C, Jolivet L, Funiciello R, Tecce F, Brunet C (1999) Syn- versus post-orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy). Tectonophysics 304:71–93

    Article  Google Scholar 

  • Santisteban JI, Mediavilla R, López-Pamo E, Dabrio CJ, Ruiz Zapata MB, Gil García MJ, Castaño S, Martínez-Alfaro PE (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol 32:287–299

    Article  Google Scholar 

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  Google Scholar 

  • Short FT, Short CA (1984) Seagrass filter: purification of estuarine and coastal waters. The estuary as a filter. Academic Press, Orlando, pp 395–413 (5 fig, 1 tab, 46 ref)

    Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Siesser WG, Rogers J (1971) An investigation of the suitability of four methods used in routine carbonate analysis of marine sediments. Deep-Sea Res 16:135–139

    Google Scholar 

  • Tomás S, Frijia G, Bömelburg E, Zamagni J, Perrin C, Mutti M (2006) Evidence for seagrass meadows and their response to paleoenvironmental changes in the early Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman). Sediment Geol 341:189–202

    Article  Google Scholar 

  • Tomassetti L, Benedetti A, Brandano M (2016) Middle Eocene seagrass facies from Apennine carbonate platforms (Italy). Sediment Geol 335:136–149

    Article  Google Scholar 

  • Tortora P (1989) La sedimentazione olocenica nella piattaforma continentale interna tra il Monte Argentario e la foce del Fiume Mignone (Tirreno Centrale). Giorn Geol 51:93–117

    Google Scholar 

  • Tortora P (1996) Depositional and erosional coastal processes during the last postglacial sea-level rise: an example from the central Tyrrhenian continental shelf (Italy). J Sediment Res 66:391–405

    Google Scholar 

  • Ungaro S (1996) Adaptive morphological strategy of Gypsina (encrusting foraminifer). In: Cherchi A (ed) Autecology of selected fossil organisms: achievements and problems, Bollettino della Società Paleontologica Italiana, Spec, vol 3. pp 233–241

  • Vetrano A, Napoletano E, Iacono R, Schroeder K, Gasparini GP (2010) Tyrrhenian Sea circulation and water mass fluxes in spring 2004: observations and model results. J Geophys Res C06023(115):18

    Google Scholar 

  • Ward LG, Kemp WM, Boynton WR (1984) The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar Geol 59:85–103

    Article  Google Scholar 

  • Wray JL (1977) Calcareous algae. Elsevier, Amsterdam, p 185

    Google Scholar 

  • Wright VP, Burgess PM (2005) The carbonate factory continuum, facies mosaics and microfacies: an appraisal of some of the key concepts underpinning carbonate sedimentology. Facies 51:17–23

    Article  Google Scholar 

  • Wright VP, Cherns L (2008) The subtle thief: selective dissolution of aragonite during shallow burial and the implications for carbonate sedimentology. In: Lukasik J, Simo A (eds) Controls on carbonate platform and reef development. SEPM, Special Publication 89, Tulsa, USA, pp 47–54

  • Zarki-Jakni B, Van Der Beek P, Poupeau G, Sosson M, Labrin E, Rossi P, Ferrandini J (2004) Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: results from apatite fission-track thermochronology. Tectonics 23(TC1003):1–28

    Google Scholar 

Download references

Acknowledgements

Critical comments and suggestions by Editor Axel Munnecke and two anonymous reviewers are much appreciated. GG and MB have been funded by Sapienza University (Ateneo Project 2015–2016), GMV has been funded by the Ministerio de Economía y Competitividad of the Spanish Government (project CGL2014-52096-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brandano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10347_2017_511_MOESM1_ESM.xlsx

Supplementary material 1 (XLSX 31 kb) Table 1S – Sedimentary components (RAL = red algae fragments; RAL br = red algae branches; BRY = bryozoans; ECH = echinoids; BIV = bivalves; GAST = gastropods; PTER = pteropods; SCAP = scaphopods; SERP = serpulids; SPO = sponges; OST = ostracods; DEC = decapods; BAR = barnacles; HYD = hydrozoans; FOR = foraminifera; TERR = terrigenous components), main sedimentological parameters (mud, sand and gravel percentages, mean size, sorting) and carbonate content (CaCO3-content weighted average) used to perform statistical analysis. Grey columns correspond to components with less than 5% abundance, non-used for statistical analysis

10347_2017_511_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 60 kb) Table 2S –, Sedimentary components, carbonate content (with median values), and type of substrate of sampled meadows (g = gravel; g-s = gravelly sand; m = matte; r = rock; s = sand; s-g = sandy gravel; s-m = sandy drowned matte; s-r = rock with abundant sand between rhizomes

10347_2017_511_MOESM3_ESM.xlsx

Supplementary material 3 (XLSX 73 kb) Table 3S – Detailed information of sedimentary components and carbonate content (with median values) for each sample corresponding to the different facies and subfacies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaglianone, G., Brandano, M. & Mateu-Vicens, G. The sedimentary facies of Posidonia oceanica seagrass meadows from the central Mediterranean Sea. Facies 63, 28 (2017). https://doi.org/10.1007/s10347-017-0511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-017-0511-2

Keywords

Navigation