Skip to main content

Advertisement

Log in

A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and The Netherlands

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Cathodoluminescence (CL) microscopy of the foliated calcite shell hinge sections of live-collected oyster Crassostrea gigas collected at seven locations along a latitudinal gradient from the Netherlands in the North Sea to the Atlantic coast of France, revealed variations in luminescence that were attributable to seasonal variations in calcification of the hinge. Photomicrographs of hinge sections and luminescence profiles were analyzed to define a micro-sampling strategy that was adopted to drill the hinge samples to determine their isotopic composition. Reconstructed seasonal seawater temperatures determined from the stable oxygen isotope (δ18O) composition along growth profiles from 32 oyster shell hinges showed distinct seasonal isotopic cycles that were compared with in situ measured seawater temperatures and salinities at each location. Comparison of the amplitude of the (δ18O) signal and the annual maximum and minimum seawater temperatures demonstrated that C. gigas shells from several locations provided a reliable record of seasonal seawater temperature variation. The exception to this was oysters from the Netherlands and northern France where winter growth rates at low temperatures were slow so that insufficient shell was deposited to allow adequate spatial resolution of sampling and this resulted in time-averaging of the reconstructed seawater temperatures and an overestimation of winter seawater temperature. A potential variability in δ18Ow–salinity relationship at low salinities could also explain the high difference between measured and predicted seawater temperatures in Dutch areas. The finding that latitudinal differences in oyster hinge growth rates and/or changes in the δ18Ow–salinity relationship can result in bias of the seawater temperature deduced from the stable isotopic composition of the hinge should be taken into account when reconstructing latitudinal gradients in seawater temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land L (eds) Stable isotopes in sedimentary geology. SEPM Short Course, Dallas, pp 1–151

    Google Scholar 

  • Arthur MA, Williams DF, Jones DS (1983) Seasonal temperature–salinity changes and thermocline in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11:655–659

    Article  Google Scholar 

  • Barbin V (2000) Cathodoluminescence of carbonate shells: biochemical vs. diagenetic process. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin Heidelberg New York, pp 303–329

    Google Scholar 

  • Barbin V, Ramseyer K, Debenay JP, Schein E, Roux M, Decrouez D (1991) Cathodoluminescence of recent biogenic carbonates: an environmental and ontogenic fingerprint. Geol Mag 128(1):19–26

    Article  Google Scholar 

  • Carriker MR, Palmer RE (1979) A new mineralized layer in the hinge of the oyster. Science 206:691–693

    Article  Google Scholar 

  • Carter JG (1980) Selected mineralogical data for the Bivalvia. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms, vol. Plenum Press, New York, pp 627-643

  • Dettman DL, Flessa KW, Roopnarine PD, Schöne BR, Goodwin DH (2004) The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado River discharge. Geochim Cosmochim Acta 68:1253–1263

    Article  Google Scholar 

  • Elliot M, de Menocal PB, Linsley BK, Howe SS (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem Geophys Geosyst 4:1056

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Galstoff PS (1964) The American oyster, Crassostrea virginica Gmelin. US Fish Wild Serv Fish Bull 64:67–74

    Google Scholar 

  • Gillikin DP (2005) Geochemistry of marine bivalve shells: the potential for paleoenvironmental reconstruction. PhD Thesis, Vrije Universiteit

  • Gillikin DP, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006) Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13C DIC and phytoplankton. Org Geochem 37:1371–1382

    Article  Google Scholar 

  • Goodwin DH, Schöne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–125

    Article  Google Scholar 

  • Harrington RT (1989) Aspects of growth deceleration in bivalves: clues to understanding the seasonal δ18O and δ13C record—a comment on Krantz et al. (1987). Palaeogeogr Palaeoclimatol Palaeoecol 70:399–407

    Article  Google Scholar 

  • Harwood AJP, Dennis PF, Marca AD, Pilling GM, Milner RS (2008) The oxygen isotope composition of water masses within the North Sea. Estuar Coast Shelf Sci 78:353–359

    Article  Google Scholar 

  • Higuera-Ruiz R, Elorza J (2009) Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences. Estuar Coast Shelf Sci 82:201–213

    Article  Google Scholar 

  • Hong W, Keppens E, Nielsen P, Van Riet A (1995) Oxygen and carbon isotope study of the Holocene oyster reefs and paleoenvironmental reconstruction on the northwest coast of Bohai Bay, China. Mar Geol 124:289–302

    Article  Google Scholar 

  • Hussenot J, Buchet V (1998) Marais maritimes et aquaculture. Activités durables pour la préservation et l’exploitation des zones humides littorales. Colloque Rochefort, Versailles, p 279

    Google Scholar 

  • Jones DS, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346

    Article  Google Scholar 

  • Kennedy H, Richardson CA, Duarte CM, Kennedy DP (2001) Oxygen and carbon isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Mar Biol 139:1115–1124

    Article  Google Scholar 

  • Khim B-K, Woo KS, Je J-G (2000) Stable isotope profiles of bivalve shells: seasonal temperature variations, latitudinal temperature gradients and biological carbon cycling along the east coast of Korea. Cont Shelf Res 20:843–861

    Article  Google Scholar 

  • Killingley JS, Berger WH (1979) Stable isotopes in a mollusk shell: detection of upwelling events. Science 205(13):186–188

    Article  Google Scholar 

  • Kirby MX, Soniat TM, Spero HJ (1998) Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios 13:560–569

    Article  Google Scholar 

  • Langlet D (2002) Enregistrement haute fréquence des conditions environnementales par les tests de bivalves. Application des techniques de marquage, cathodoluminescence, et chimie à l’huître Crassostrea gigas de l’étang de Thau (Hérault, France). PhD Thesis, Univ UPMC-Paris 06

  • Langlet D, Alunno-Bruscia M, Rafélis M, Renard M, Roux M, Schein E, Buestel D (2006) Experimental and natural manganese-induced cathodoluminescence in the shell of the Japanese oyster Crassostrea gigas (Thunberg, 1793) from Thau Lagoon (Hérault, France): ecological and environmental implications. Mar Ecol Prog Ser 317:143–156

    Article  Google Scholar 

  • Lartaud F (2007) Les fluctuations haute fréquence de l’environnement au cours des temps géologiques. Mise au point d’un modèle de référence actuel sur l’enregistrement des contrastes saisonniers dans l’Atlantique nord. PhD Thesis, Univ. UPMC-Paris 06

  • Lartaud F, Langlet D, de Rafelis M, Emmanuel L, Renard M (2006) Description of seasonal rhythmicity in fossil oyster shells Crassostrea aginensis Tournouer, 1914 (Aquitanian) and Ostrea bellovacina Lamarck, 1806 (Thanetian). Cathodoluminescence and sclerochronological approaches. Geobios 39:845–852

    Article  Google Scholar 

  • Lawrence DR (1988) Oysters as geoarcheologic objects. Geoarcheology 3:267–274

    Article  Google Scholar 

  • Loosanoff VL, Nomejko CA (1949) Growth of oysters, O virginica, during different months. Biol Bull 97:82–94

    Article  Google Scholar 

  • Mook WG (1971) Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeogr Palaeoclimatol Palaeoecol 9:245–263

    Article  Google Scholar 

  • Mueller-Lupp T, Erlenkeuser H, Bauch HA (2003) Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves. Boreas 32:292–303

    Article  Google Scholar 

  • Pirastru L (1994) The Bay of Bourgneuf underground salt water: physicochemical characteristics, bioavailability of phosphates and potential fertility for Skeletonema costatum (Grev.) Cleve. PhD Thesis, Univ. Nantes

  • Quayle DB (1988) Pacific oyster culture in British Columbia. Can Bull Fish Aquatic Sci 218:241

    Google Scholar 

  • Rhoads DC, Lutz RA (1980) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum Press, New York, p 750

    Google Scholar 

  • Richardson CA (2001) Molluscs as archive of environmental change. Oceanogr Mar Biol—Annu Rev 39:103–164

    Google Scholar 

  • Richardson CA, Collis SA, Ekaratne K, Dare P, Key D (1993) The age determination and growth rate of the European flat oyster, Ostrea edulis, in British waters determined from acetate peels of umbo growth lines. ICES J Mar Sci 50:493–500

    Article  Google Scholar 

  • Schein E, Roux M, Barbin V, Chiesi F, Renard M, Rio M (1991) Enregistrement des paramètres écologiques par la coquille des bivalves: approche pluridisciplinaire. Bull Soc Geol Fr 162:687–698

    Google Scholar 

  • Schmidt GA (1999) Forward modeling of carbonate proxy data from planktonic foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography 14:482–498

    Article  Google Scholar 

  • Schöne BR (2003) A “clam-ring” master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. The Holocene 13:39–49

    Article  Google Scholar 

  • Schöne BR, Tanabe K, Dettman DL, Sato S (2003) Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar Biol 142:473–485

    Google Scholar 

  • Schöne BR, Freyre Castro AD, Fiebig J, Houk SD, Oschmann W, Kröncke I (2004) Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr Palaeoclimatol Palaeoecol 212:215–232

    Google Scholar 

  • Stenzel HB (1963) Aragonite and calcite as constituents of adult oyster shells. Science 142:232–233

    Article  Google Scholar 

  • Stenzel HB (1971) Oysters. In: Moore RC (ed) Treatise in invertebrate paleontology, Mollusca 6, Bivalvia, vol 3. Geol Soc Am, University of Kansas, p 271

    Google Scholar 

  • Surge D, Lohmann KC, Dettman DL (2001) Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeogr Palaeoclimatol Palaeoecol 172:283–296

    Article  Google Scholar 

  • Tivollier J, Létolle R (1968) Résultat et interprétation d’analyses isotopiques de faunes malacologiques du Tertiaire parisien. Bureau de Recherches Géologiques et Minières, Memoires, Paris, pp 347–358

    Google Scholar 

  • Wisshak M, López-Correa M, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep Sea Res I 56:374–407

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fabienne Rauflet, Edouard Bédier, Patrick Soletchnik, Philippe Geairon, Danièle Maurer, Florence D’Amico and Marianne Alunno-Bruscia from IFREMER, as well as Joana Cardoso from the NIOZ, for providing the oysters used in this investigation. This work could have been accomplished without the hydrographic data from the IFREMER marine stations from Port-en-Bessin, Fort-Espagnol, La Tremblade, and Arcachon. We greatly appreciate the helpful comments by the reviewer Max Wisshak and the journal chief editor Andre Freiwald. This study was supported financially by the UPMC (Univ. Paris 06) via the Marc de Rafelis BQR project High Frequency to Very High Frequency Recordings of Environmental Changes to Climate by Biomineralizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Lartaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lartaud, F., Emmanuel, L., de Rafelis, M. et al. A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and The Netherlands. Facies 56, 13–25 (2010). https://doi.org/10.1007/s10347-009-0196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-009-0196-2

Keywords

Navigation