Skip to main content
Log in

Influence of different GPS schedules on the detection rate of wolf feeding sites in human-dominated landscapes

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

GPS collars are commonly used to estimate predation and scavenging rates in large carnivores. However, little information is available on the impact of different schedules on feeding site detection rates. Here, we evaluated the effect of different GPS schedules on the detection rate of wolves’ feeding sites in a human-dominated landscape of NW Iberia (Galicia), where the main food sources for wolves were large livestock ungulates (horses and cattle). Combining an intensive GPS schedule of 20 min time intervals between locations, used as reference values, with the field examination of clusters of locations, on average, we observed a 40 and 24 % decrease in clusters and events detection rates from 20 to 40 min, respectively, and a 13 and 15 % decrease from 40 to 60 min, respectively. On the other hand, on a subset of monitoring days, from 10 to 20 min, the proportion of events detected decreased by 6 %. The decrease in detection rates over time was similar across livestock species and age classes. It is worth noting that the decrease in detection rates was higher for scavenging events, which can be common in human-dominated landscapes, compared to predation events. Our results indicate that using long time intervals between locations to study wolf feeding behavior in human-dominated landscapes will underestimate not only predation rates, but also the importance of scavenging events. Since a 10-min schedule reduces the expected battery life of collars notably and the decrease in detection rate was low between 10 and 20 min, compared to 20 min and the longer time intervals explored, we recommend a GPS schedule of 20 min to study the feeding behavior of wolves in human-dominated landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvares F (2011) Ecologia e conservação do lobo (Canis lupus, L.) no noroeste de Portugal (Doctoral dissertation, Tese de Doutoramento em Biologia da Conservação. Faculdade de Ciências da Universidade de Lisboa).

  • Anderson CR, Lindzey FG (2003) Estimating cougar predation rates from GPS location clusters. J Wildl Manage 67:307–316

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Grothendieck G (2015). Package ‘lme4’.

  • Cavalcanti SM, Gese EM (2010) Kill rates and predation patterns of jaguars (Panthera onca) in the southern Pantanal, Brazil. J Mammal 91:722–736

    Article  Google Scholar 

  • Chapron G et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Chavez AS, Gese EM (2006) Landscape use and movements of wolves in relation to livestock in a wildland–agriculture matrix. J Wildl Manage 70:1079–1086

    Article  Google Scholar 

  • Ciucci P, Boitani L (1998) Wolf and dog depredation on livestock in central Italy. Wild Soc Bull 26:504–514

    Google Scholar 

  • Clevenger AP, Campos MA, Hartasanchez A (1994) Brown bear (Ursus arctos) predation on livestock in the Cantabrian Mountains, Spain. Acta Theriol 39:267–278

    Article  Google Scholar 

  • Cuesta L, Barcena F, Palacios F, Reig S (1991) The trophic ecology of the Iberian Wolf (Canis lupus signatus, Cabrera, 1907): a new analysis of stomach’s data. Mammalia 55:239–254

    Article  Google Scholar 

  • Darimont CT, Reimchen TE, Paquet PC (2003) Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Can J Zool 82:349–353

    Article  Google Scholar 

  • Demma DJ, Barber-Meyer SM, Mech LD (2007) Testing global positioning System telemetry to study wolf predation on Beer fawns. J Wildl Manage 71:2767–2775

    Article  Google Scholar 

  • Dickman AJ, Hazzah L, Carbone C, Durant SM (2014) Carnivores, culture and ‘contagious conflict’: multiple factors influence perceived problems with carnivores in Tanzania’s Ruaha landscape. Biol Cons 178:19–27

    Article  Google Scholar 

  • Dorresteijn I, Hanspach J, Kecskés A, Latková H, Mezey Z, Sugár S, von Wehrden H, Fischer J (2014) Human-carnivore coexistence in a traditional rural landscape. Land Ecol 29:1145–1155

    Article  Google Scholar 

  • Dussault C, Courtois R, Huot J, Ouellet JP (2001) The use of forest maps for the description of wildlife habitats: limits and recommendations. Can J Forest Res 31:1227–1234

    Article  Google Scholar 

  • Forbes GJ, Theberge JB (1996) Response by wolves to prey variation in central Ontario. Can J Zool 74:1511–1520

    Article  Google Scholar 

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S, Heiberger R, Laboissiere R, Monette G, Murdoch D, Nilsson H, Ogle D, Ripley B, Venables W, Winsemius D, eileis A, R-Core (2015) Package ‘car’.

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Franke A, Caelli T, Kuzyk G, Hudson RJ (2006) Prediction of wolf (Canis lupus) kill-sites using hidden Markov models. Ecol Modelling 197:237–246

    Article  Google Scholar 

  • Holmern T, Nyahongo J, Røskaft E (2007) Livestock loss caused by predators outside the Serengeti National Park, Tanzania. Biol Cons 135:518–526

    Article  Google Scholar 

  • Huggard DJ (1993) Prey selectivity of wolves in Banff National Park. I. Prey species. Can J Zool 71:130–139

    Article  Google Scholar 

  • Inskip C, Zimmermann A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43:18–34

    Article  Google Scholar 

  • Johnson DD, Ganskopp DC (2008) GPS collar sampling frequency: effects on measures of resource use. Rangeland Ecol Manag 61:226–231

    Article  Google Scholar 

  • Lagos L (2013) Ecología del lobo (Canis lupus), del poni salvaje (Equus ferus atlanticus) y del ganado vacuno semi-extensivo (Bos taurus) en Galicia: interacciones depredador-presa. PhD Thesis. University of Santiago de Compostela, Galicia, Spain, p 486

  • Llaneza L, López-Bao JV (2015) Indirect effects of changes in environmental and agricultural policies on the diet of wolves. Eur J Wildl Res 61:895–902

    Article  Google Scholar 

  • Llaneza L, Fernández A, Nores C (1996) Dieta del lobo en dos zonas de Asturias (España) que difieren en carga ganadera. Donana Acta Vertebrata 23:201–213

    Google Scholar 

  • Llaneza L, López-Bao JV, Sazatornil V (2012) Insights into wolf presence in humandominated landscapes: the relative role of food availability, humans and landscape attributes. Divers Dist 18:459–469

    Article  Google Scholar 

  • López-Bao JV, Sazatornil V, Llaneza L, Rodríguez A (2013) Indirect effects on Heathland Conservation and Wolf Persistence of Contradictory policies that threaten traditional free-ranging horse husbandry. Conserv Lett 6:448–455

    Article  Google Scholar 

  • Martins Q, Horsnell WGC, Titus W, Rautenbach T, Harris S (2011) Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J Zool 283:81–87

    Article  Google Scholar 

  • Marucco F, McIntire EJB (2010) Predicting spatio-temporal recolonization of large carnivore populations and livestock depredation risk: wolves in the Italian Alps. J Appl Ecol 47:789–798

    Article  Google Scholar 

  • Mattisson J, Odden J, Nilsen EB, Linnell JDC, Persson J, Andrén H (2011) Factors affecting Eusarian lynx kill rates on semi-domestic reindeer in northern Scandinavia: can ecological research contribute to the development of a fair compensation system? Biol Cons 144:3009–3017

    Article  Google Scholar 

  • Mech LD (1966) The Wolves of Isle Royale. U.S. National Parks Service Fauna Series No. 7. U.S. Government Printing Office, Washington, D.C

    Google Scholar 

  • Mech LD (1970) The wolf: the ecology and behavior of an endangered species. Natural History Press (Doubleday Publishing Co., N.Y., USA), pp 389

  • Mech LD (2011) Gray wolf (Canis lupus) movements and behavior around a kill site and implications for GPS collar studies. Can Field Nat 125:353–356

    Google Scholar 

  • Mech LD, Boitani L (Eds.). (2010). Wolves: behavior, ecology, and conservation. University of Chicago Press. Chicago, USA

  • Meriggi A, Lovari S (1996) A review of wolf predation in Southern Europe: does the wolf prefer wild prey to livestock? J Appl Ecol 33:1561–1571

    Article  Google Scholar 

  • Migli DM, Youlatos D, Iliopoulos Y (2005) Winter food habits of wolves in central Greece. J Biol Res 4:217–220

    Google Scholar 

  • Mills KJ, Patterson BR, Murray DL (2006) Effects of variable sampling frequencies on GPS transmitter efficiency and estimated wolf home range size and movement distance. Wildl. Soc Bull 34:1463–1469

    Google Scholar 

  • Newsome TM, Boitani L, Chapron G, Ciucci P, Dickman CR, Dellinger JA, López-Bao JV, Peterson RO, Shores CR, Wirsing AJ, Ripple WJ (2016) Food habits of the world’s grey wolves. Mammal Review. in press. DOI: 10.1111/mam.12067.

  • Palacios V, Mech LD (2011) Problems with studying wolf predation on small prey in summer via global positioning system collars. Eur J Wildl Res 57:149–156

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

    Google Scholar 

  • Rigg R, Find’o S, Wechselberger M, Gorman ML, Sillero-Zubiri C, Macdonald DW (2011) Mitigating carnivore-livestock conflict in Europe: lessons from Slovakia. Oryx 45:270–280

    Article  Google Scholar 

  • Sand H, Zimmermann B, Wabakken P, Andrèn H, Pedersen HC (2005) Using GPS Technology and GIS cluster analyses to estimate kill rates in wolf-ungulate ecosystems. Wild Soc Bull 33:914–925

    Article  Google Scholar 

  • Sand H, Wabakken P, Zimmermann B, Johansson Ö, Pedersen HC, Liberg O (2008) Summer kill rates and predation pattern in a wolf–moose system: can we rely on winter estimates? Oecologia 156:53–64

    Article  PubMed  Google Scholar 

  • Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Smith JA, Wang Y, Wilmers CC (2015) Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc R Soc Lond Ser B 282:20142711

    Article  Google Scholar 

  • Svoboda NJ, Belant JL, Beyer DE, Duquette JF, Martin JA (2013) Identifying bobcat (Lynx rufus) kill sites using a global positioning system. Wildl Biol 19:78–86

    Article  Google Scholar 

  • Tambling CJ, Cameron EZ, Du Toit JT, Getz WM (2010) Methods for locating African Lions kills using Global Positioning System movement data. J Wildl Manage 74:549–556

    Article  Google Scholar 

  • Thurber JM, Person RO (1993) Effects of population density and pack size on the foraging ecology of gray wolves. J Mammal 74:879–889

    Article  Google Scholar 

  • Tourani M, Moqanaki EM, Boitani L, Ciucci P (2014) Anthropogenic effects on the feeding habits of wolves in an altered arid landscape of central Iran. Mammalia 78:117–121

    Article  Google Scholar 

  • Treves A, Jurewicz R, Naughton-Treves L, Rose R, Wydeven A (2002) Wolf depredation on domestic animals in Wisconsin. Wildl Soc Bull 30:231–241

    Google Scholar 

  • Webb NF, Hebblewhite M, Merrill EH (2006) Statistical methods for identifying wolf kill sites using global positioning system locations. J Wildl Manage 72:798–807

    Article  Google Scholar 

  • Woodroffe R, Thirgood S, Rabinowitz A (2005) People and wildlife, conflict or co-existence? (No. 9). Cambridge University Press, UK

  • Zimmermann B, Wabakken P, Sand H, Liberg O (2007) Wolf movement patterns: a key to estimation of kill rate? J Wildl Manage 71:1177–1182

    Article  Google Scholar 

Download references

Acknowledgments

We are in debt to the staff of the Regional Government of Galicia and the Spanish Ministry of Agriculture, Food and Environment, for their collaboration and the logistical support they provided, especially the rangers from the Regional Government of Galicia working in Ponte Areas, A Estrada and, Pablo, Alvaro and Loli. We thank all volunteers collaborating in the fieldwork and many farmers for their help, in particular Fuco. We are also grateful to Barbara Zimmermann for their constructive comments. JVLB was supported by a ‘Juan de la Cierva’ research contract (JCI-2012-13066) from the Spanish Ministry of Economy and Competitiveness. This is scientific paper no. 12 of the Iberian Wolf Research Team (IWRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vicente López-Bao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planella, A., Palacios, V., García, E.J. et al. Influence of different GPS schedules on the detection rate of wolf feeding sites in human-dominated landscapes. Eur J Wildl Res 62, 471–478 (2016). https://doi.org/10.1007/s10344-016-1020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-016-1020-2

Keywords

Navigation