Skip to main content

Advertisement

Log in

Management of hybridization in an endemic species: decision making in the face of imperfect information in the case of the black wildebeest—Connochaetes gnou

  • Review
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Hybridization between introduced and endemic ungulates, resulting from anthropogenic actions, has been reported for several species. Several studies of such events contain the common themes of extralimital movements, problematic phenotypic and genetic detection, and imperfect management. In southern Africa, the endemic black wildebeest (Connochaetes gnou) currently faces a serious threat of hybridization and introgression. This species survived near extinction and consequent genetic bottlenecks in the late 1800s and in the 1930s. Initiatives by private farmers followed by conservation authorities led to a dramatic recovery in numbers of this species. However, in an ironic twist, the very same advances in conservation and commercial utilisation which led to the recovery of numbers are now themselves threatening the species. Injudicious translocation has brought the species into contact with its congener, the blue wildebeest (Connochaetes taurinus), and in recent times, hybridization between the species has occurred at numerous localities in South Africa. Consequently, a significant proportion of the national black wildebeest population potentially carries a proportion of introgressed blue wildebeest genetic material. We discuss completed and ongoing attempts to find molecular markers to detect hybrids and highlight the difficulty of detecting advanced backcrosses. Additional avenues of research, such as work on morphology (cranial and postcranial elements), estimating of the probability of introgression and modelling of diffusion rates are also introduced. In addition to the difficulty in detecting hybrid animals or herds, the lack of consensus on the fate of hybrid herds is discussed. Finally, in an environment of imperfect information, we caution against implementation of management responses that will potentially induce a new genetic bottleneck in C. gnou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abernethy K (1994) The establishment of a hybrid zone between red and sika deer (genus Cervus). Mol Ecol 3:551–562

    Article  PubMed  CAS  Google Scholar 

  • Ackermann RR, Brink JS, Vrahimis S, De Klerk B (2010) Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. SA J Sci 106:1–5

    Google Scholar 

  • Anderson EC, Dunham KK (2005) Spip 1.0: a program for simulating pedigrees and genetic data in age-structured populations. Mol Ecol Notes 5:459–461

    Article  CAS  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616

    Article  Google Scholar 

  • Brink JS (1993) Postcranial evidence for the evolution of the black wildebeest, Connochaetes gnou: an exploratory study. Palaeontol Afr 30:61–69

    Google Scholar 

  • Brink JS (2005) The evolution of the black wildebeest (Connochaetes gnou) and modern large mammal faunas of central southern Africa. Ph.D. dissertation, University of Stellenbosch

  • Brink JS, Berger LR, Churchill SE (1999) Mammalian fossils from erosional gullies (dongas) in the Doring River drainage. Central Free State Province, South Africa. In: Becker C, Manhart H, Peters J, Schibler J (eds) Historiumanimalium ex ossibus. BeiträgezurPaläoanatomie, Archäologie, Ägyptologie, Ethnologie und Geschichte der Tiermedizin: Festschrift für Angela von den Driesch. Verlag Marie Leidorf GmbH, Rahden/Westf, pp 79–90

    Google Scholar 

  • Brooke RK, Lloyd RH, De Villiers AL (1986) Alien and translocated terrestrial vertebrates in South Africa. In: Macdonald IAW, Kruger FJ, Ferrar AA (eds) The ecology and management of biological invasions in southern Africa. Oxford University Press, Capetown, pp 63–74

    Google Scholar 

  • Buckland RA, Evans HJ (1978) Cytogenetic aspects of phylogeny in the Bovidae: I. G-banding. Cytogenet Cell Genet 21:42–63

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD, Lewis LC (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564

    Article  PubMed  CAS  Google Scholar 

  • Codron D, Brink JS (2007) Trophic ecology of two savanna grazers, blue wildebeest Connochaetes taurinus and black wildebeest Connochaetes gnou. Eur J Wildl Res 53:90–99

    Article  Google Scholar 

  • Corbet SW, Robinson TJ (1991) Genetic divergence in South African wildebeest: comparative cytogenetics and analysis of mitochondrial DNA. J Hered 82:447–452

    PubMed  CAS  Google Scholar 

  • Corbet SW, Grant WS, Robinson TJ (1994) Genetic divergence in South African wildebeest: analysis of allozyme variability. J Hered 85:479–483

    PubMed  CAS  Google Scholar 

  • Cordingley JE, Sundaresan SR, Fischhoff IR, Shapiro B, Ruskey J, Rubenstein DI (2009) Is the endangered grevy’s zebra threatened by hybridization? Anim Conserv 12:505–513

    Article  Google Scholar 

  • De Klerk B (2007). An osteological documentation of hybrid wildebeest and its bearing on black wildebeest (Connochaetes gnou) evolution. M.Sc. thesis, University of the Witwatersrand

  • East R (1999) African antelope database 1999. IUCN, Cambridge, UK

    Google Scholar 

  • Fabricius C, Lowry D, Van den Berg P (1988) Fecund black wildebeest × blue wildebeest hybrids. SA J Wild Res 18:35–37

    Google Scholar 

  • Glover KA, Hansen MM, Lien S, Als TD, Høyheim B, Skaala O (2010) A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment. BMC Genet 11:2

    Article  PubMed  Google Scholar 

  • Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152:355–371

    PubMed  CAS  Google Scholar 

  • Grobler JP, Van der Bank FH (1995) Allozyme divergence between four representatives of the sub-family Alcelaphinae (Family: Bovidae). Comp Biochem Physiol 112B:303–308

    CAS  Google Scholar 

  • Grobler JP, Hartl GB, Grobler N, Kotze A, Botha K, Tiedemann R (2005) The genetic status of an isolated black wildebeest (Connochaetesgnou) population from the Abe Bailey Nature Reserve, South Africa: Microsatellite data on a putative past hybridization with blue wildebeest (C. taurinus). Mamm Biol 70:35–45

    Article  Google Scholar 

  • Haasl RJ, Payseur BA (2011) Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites. Heredity 106:158–171

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2009) Conservation genetics and the North American bison (Bison bison). J Hered 100:411–420

    Article  PubMed  Google Scholar 

  • Holt WG, Pickard AR (1999) Role of reproductive technologies and genetic resource banks in animal conservation. Rev Reprod 4:143–150

    Article  PubMed  CAS  Google Scholar 

  • IUCN (2008) IUCN SSC antelope specialist group 2008. Connochaetesgnou. In: IUCN 2010. IUCN red list of threatened species. IUCN. http://www.iucnredlist.org

  • Kirkman AHB (1938) Conservation notes. Connochaetesgnou. J Soc Pres Fauna Emp 35:50

    Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. TREE 20:136–142

    PubMed  Google Scholar 

  • McDevitt AD, Edwards CJ, O'Toole P, O'Sullivan P, O'Reilly C, Carden RF. (2009) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland Mammalian Biology 74: 263–273

  • McGranahan DA (2008) Managing private, commercial rangelands for agricultural production and wildlife diversity in Namibia and Zambia. Biodivers Conserv 17:1965–1977

    Article  Google Scholar 

  • Perez-Espona S, Pemberton JM, Putman R. (2009) Red and sika deer in the British Isles, current management issues and management policy. Mammalian Biology74: 247–262

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Røed KH, Ernest EM, Midthjell L, Msoffe PLM (2011) Identification and characterization of 17 microsatellite loci in the blue wildebeest, Connochaetes taurinus. Conserv Genet Resour 3:181–183

    Article  Google Scholar 

  • Schlőtterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–70

    Article  PubMed  Google Scholar 

  • Senn HV, Pemberton JM (2009) Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Molecol 18:862–876

    CAS  Google Scholar 

  • Simberloff D (1996) Hybridization between native and introduced species: importance for conservation. Wildl Biol 2:143–150

    Google Scholar 

  • Skinner JD, Chimimba CT (2005) The mammals of the Southern African subregion, 3rd edn. Cambridge University Press, Cambridge University Press, Cape Town

    Google Scholar 

  • Spear D, Chown SL (2009) The extent and impacts of ungulate translocations: South Africa in a global context. Biol Conserv 142:353–363

    Article  Google Scholar 

  • Stokes CS (1942) Sanctuary. The Cape Times Limited, Cape Town, p 472

    Google Scholar 

  • Vähä J-P, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  PubMed  Google Scholar 

  • Verklaar ELC, Vervaecke H, Roden C, Mendoza R, Barwegen MW, Susilawati T, Nijman IJ, Lenstra JA (2003) Paternally inherited markers in bovine hybrid populations. Heredity 91:565–569

    Article  Google Scholar 

  • Von Richter W (1971a) Connochaetes gnou. Mamm Species 50:1–6

    Google Scholar 

  • Von Richter W (1971b) Past and present distribution of the black wildebeest, Connochaetes gnou Zimmerman (Artiodactyla: Bovidae) with special reference to the history of some herds in South Africa. Annls Transv Mus 27:35–57

    Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other Artiodactyls. Mol Ecol 6:697–699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Grobler.

Additional information

Communicated by C. Gortázar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobler, J.P., Rushworth, I., Brink, J.S. et al. Management of hybridization in an endemic species: decision making in the face of imperfect information in the case of the black wildebeest—Connochaetes gnou . Eur J Wildl Res 57, 997–1006 (2011). https://doi.org/10.1007/s10344-011-0567-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-011-0567-1

Keywords

Navigation