Skip to main content
Log in

Resistance Induction in Chickpea (Cicer arietinum L.) Against Salinity Stress Through Biochar as a Soil Amendment and Salicylic Acid-Induced Signaling

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Abiotic stressors have affected seed germination, vigor, and ultimate productivity of several important crops, including Cicer arietinum. Many efforts have been made to make chickpeas adaptable to climate change and its resulting abiotic stresses. Therefore, the current study was designed to check the tolerance of chickpea under salinity stress through salicylic acid and biochar application. Two varieties of chickpea seeds, Bittle (V1) and Parbat (V2), were primed in a 150 ppm solution of salicylic acid and sown in earthen pots. Soil and biochar obtained from Acacia nilotica were analyzed through scanning electron microscopy and energy dispersive X‑Ray spectroscopy. Germination parameters including MGT, T50, GI, CVG, TGI, and GE were improved from 5–3 days, 7–5 days, 61–55%, 2.3–2.7 days, 70–57%, and 3.2–3.5 days for V1 and from 7–3 days, 6–8 days, 58–55%, 2.9–2.7 days, 72–61% and 7–3 days for V2 respectively. Agronomic parameters including FE%, AGR, NAR, LAR, %MC, and CGR were amplified to 100%, 1.3–1.2 mg, 2–3 mg, 5–6 mg, 73–88% and 0.02–0.09 mg for V1 and 89–82%, 0.4–0.6 mg, 4–3 mg, 6–5 mg, 56–58% and 0.05–0.05 mg for V2 respectively. Conclusively, V1 was more suitable and was frequent in response to salicylic acid and biochar during seed germination and the vegetative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S, Adrees M, Mahmood A, Zia-ur-Rehman M, Qayyum MF (2018) Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2019) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Ansari F, Ksiksi T (2016) A quantitative assessment of germination parameters: the case of Crotalaria Persica and Tephrosia Apollinea. Open Ecol J 9(1):13–21

    Article  Google Scholar 

  • Ali SA, Idris AY (2015) Effect of seed size and sowing depth on germination and some growth parameters of faba bean (Vicia faba L.). Agric Biol Sci J 1(1):1–5

    CAS  Google Scholar 

  • Ali L, Xiukang W, Naveed M, Ashraf S, Nadeem SM, Haider FU, Mustafa A (2021) Impact of biochar application on germination behavior and early growth of maize seedlings: insights from a growth room experiment. Appl Sci 11(24):11666

    Article  CAS  Google Scholar 

  • Amin M, Khan MR, Hassan SS, Khan AA, Imran M, Goheer MA, Perveen A (2020) Monitoring agricultural drought using geospatial techniques: a case study of Thal region of Punjab, Pakistan. J Water Clim Chang 11(S1):203–216

    Article  Google Scholar 

  • Anaya F, Fghire R, Wahbi S, Loutfi K (2018) Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J Saudi Soc Agric Sci 17(1):1–8

    Google Scholar 

  • Asadi M, Heidari MA, Kazemi M, Filinejad AR (2013) Salicylic acid induced changes in some physiological parameters in chickpea (Cicer arietinum L.) under salt stress. J Agric Technol 9(2):311–316

    Google Scholar 

  • Babar BH, Cheema MA, Saleem MF, Wahid A (2014) Screening of maize hybrids for enhancing emergence and growth parameters at different soil moisture regimes. Soil Environ 33(1):51–58

    Google Scholar 

  • Barampuram S, Allen G, Krasnyanski S (2014) Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell Tiss Organ Cult 118(1):179–185

    Article  CAS  Google Scholar 

  • Bina F, Bostani A (2017) Effect of Salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv Life Sci 4(3):77–83

    CAS  Google Scholar 

  • Dawood MG (2016) Influence of osmoregulators on plant tolerance to water stress. Sci Agric 13(1):42–58

    CAS  Google Scholar 

  • Egamberdieva D, Hua M, Reckling M, Wirth S, Bellingrath-Kimura SD (2018) Potential effects of biochar-based microbial inoculants in agriculture. Environ Sustain 1(1):19–24

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Huang J (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. J Plant Growth Regul 37(2):591–601

    Article  CAS  Google Scholar 

  • Fay PA, Schultz MJ (2009) Germination, survival, and growth of grass and forb seedlings: effects of soil moisture variability. Acta Oecol 35(5):679–684

    Article  Google Scholar 

  • Ghassemi-Golezani K, Chadordooz-Jeddi A, Nasrollahzadeh S, Moghaddam M (2010) Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean (Phaseolus vulgaris L.) cultivars. Not Bot Horti Agrobot Cluj Napoca 38(1):109–113

    Google Scholar 

  • Ghule PL, Dahiphale VV, Jadhav JD, Palve DK (2013) Absolute growth rate, relative growth rate, net assimilation rate as influenced on dry matter weight of Bt cotton. Int Res J Agric Econ Stat 4(1):42–46

    Google Scholar 

  • Hale L, Luth M, Kenney R, Crowley D (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199

    Article  Google Scholar 

  • Harvey OR, Kuo LJ, Zimmerman AR, Louchouarn P, Amonette JE, Herbert BE (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol 46(3):1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MEH, Ali AYA, Elsiddig AMI, Zhou G, Nimir NEA, Agbna GH, Zhu G (2021) Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pak J Bot 53(2):387–392

    Article  CAS  Google Scholar 

  • Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA 110:225–233

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515

    Article  CAS  Google Scholar 

  • Kamara A, Kamara A, Mansaray M, Sawyerr PA (2014) Effects of biochar derived from maize stover and rice straw on the germination of their seeds. Am J Agric For 2(6):246–249

    Google Scholar 

  • Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, Mazhar R (2018) Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). J of Plant Nutrition 41(4):526–538

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res 48(7):577–585

    Article  CAS  Google Scholar 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180(5):672–678

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cheng B, Peng Y, Zhang Y (2020) Adaptability to abiotic stress regulated by γ‑aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass. Plant Physiol Biochem 157:185–194

    Article  CAS  PubMed  Google Scholar 

  • Loutfy N, Azooz M, Abou Alhamd MF (2020) Exogenously-applied salicylic acid and ascorbic acid modulate some physiological traits and antioxidative defense system in Zea mays L. seedlings under drought stress. Egypt J Bot 60(1):313–324

    Google Scholar 

  • Lusiba S, Odhiambo J, Ogola JJA (2018) Growth, yield and water use efficiency of chickpea (Cicer arietinum): response to biochar and phosphorus fertilizer application. Arch Agronom Soil Scie 64(6):819–833

    Article  CAS  Google Scholar 

  • Ma X, Zhou B, Budai A, Jeng A, Hao X, Wei D, Rasse D (2016) Study of biochar properties by scanning electron microscope—energy dispersive X‑ray spectroscopy (SEM-EDX). Commun Soil Sci Plant Anal 47(5):593–601

    Article  CAS  Google Scholar 

  • Nafees M, Ullah S, Ahmed I (2021) Morphological and elemental evaluation of biochar through analytical techniques and its combined effect along with plant growth promoting rhizobacteria on Vicia faba L. under induced drought stress. Microsc Res Tech 84(12):2947–2959 https://doi.org/10.1002/jemt.23854

    Article  CAS  PubMed  Google Scholar 

  • Nafees M, Ullah S, Ahmed I (2022) Modulation of drought adversities in Vicia faba by the application of plant growth promoting rhizobacteria and biochar. Microsc Res Tech 85(5):1856–1869

    Article  CAS  PubMed  Google Scholar 

  • Płażek A, Tatrzańska M, Maciejewski M, Kościelniak J, Gondek K, Bojarczuk J, Dubert F (2013) Investigation of the salt tolerance of new Polish bread and durum wheat cultivars. Acta Physiol Plantarum 35(8):2513–2523

    Article  Google Scholar 

  • Rajalakshmi A, Kumar SK, Bharathi CD, Karthika R, Divya VK, Meera R, Mohanapriya S (2015) Effect of biochar in seed germination-in-vitro study. Int J Biosci Nanosci 2:132–136

    Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284

    Article  CAS  Google Scholar 

  • Rezaie N, Razzaghi F, Sepaskhah AR (2019) Different levels of irrigation water salinity and biochar influence on faba bean yield, water productivity, and ions uptake. Commun Soil Scie Plant Anal 50(5):611–626

    Article  CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111(9):3268–3273

    Article  CAS  PubMed  Google Scholar 

  • Sadiq S, Saboor A, Mohsin AQ, Khalid A, Tanveer F (2019) Ricardian analysis of climate change—agriculture linkages in Pakistan. Clim Dev 11(8):679–686

    Article  Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26(9):1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajedi A, Sajedi NA (2020) Effect of application biochar and priming and foliar application with water and salicylic acid on physiological traits of dry land safflower. Environ Stress Crop Sci 13(1):155–169

    Google Scholar 

  • Shah AN, Yang G, Tanveer M, Iqbal J (2017) Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density. Acta Physiol Plantarum 39(5):1–10

    Article  CAS  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2018) Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr Plant Biol 13:16–22

    Article  Google Scholar 

  • Shemi R, Wang R, Gheith ES, Hussain HA, Hussain S, Irfan M, Wang L (2021) Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep 11(1):1–14

    Article  Google Scholar 

  • Solaiman ZM, Murphy DV, Abbott LK (2012) Biochars influence seed germination and early growth of seedlings. Plant Soil 353(1):273–287

    Article  CAS  Google Scholar 

  • Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. Glob Change Biol Bioenergy 5(2):165–176

    Article  CAS  Google Scholar 

  • Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W (2015) A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 512:495–505

    Article  PubMed  Google Scholar 

  • Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Ramirez AA, Valéro JR (2016) Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar. Sci Total Environ 571:772–777

    Article  CAS  PubMed  Google Scholar 

  • Uddin S, Ullah S, Nafees M (2021) Effect of seed priming on growth and performance of Vigna radiata L. under induced drought stress. J Agric Food Res 4:100140

    CAS  Google Scholar 

  • Ullah S, Zada J, Ali S (2016) Effect of nephthyl acetic acid foliar spray on amelioration of drought stress tolerance in maize (Zea mays L.). LCSS 47(12):1542–1558

    Article  CAS  Google Scholar 

  • Vujosevic B, Canak P, Babic M, Mirosavljevic M, Mitrovic B, Stanisavljevic D, Tatic M (2018) Field performance of abnormal maize seedlings. Ratarstvo I Povrtarstvo/field Veg Crop Res 55(1):34–38

    Article  Google Scholar 

  • Wang G, Xu Z (2013) The effects of biochar on germination and growth of wheat in different saline-alkali soil. Asian Agric Res 5:116–119

    CAS  Google Scholar 

  • Wheeler T, Von Braun J (2013). Climate change impacts on global food security. Science 341(6145):508–513. https://doi.org/10.1126/science.1239402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful and obliged to Dr. Fazal Yazdan (Scientist), National Agricultural Research Center, Islamabad, for providing seeds of chickpea varieties Bittle and Parbat for research work. The author also thanks the National Centre of Excellence in Geology, the University of Peshawar, for providing biochar SEM and EDX analysis. The author is very thankful to the Department of Botany, University of Peshawar, where the pot experiment was carried out, and lab facilities were provided for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nafees.

Ethics declarations

Conflict of interest

U. Ali, S. Ullah and M. Nafees declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, U., Ullah, S. & Nafees, M. Resistance Induction in Chickpea (Cicer arietinum L.) Against Salinity Stress Through Biochar as a Soil Amendment and Salicylic Acid-Induced Signaling. Gesunde Pflanzen 75, 1871–1883 (2023). https://doi.org/10.1007/s10343-023-00851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00851-2

Keywords

Navigation