Skip to main content

Advertisement

Log in

Yield Components and Crop Water Stress Index (CWSI) of Mung Bean Grown Under Deficit Irrigations

Ertragskomponenten und Wasserstressindex von Mungbohnen bei Defizitbewässerung

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

This study was conducted in 2018 growing season to determine the response of mung bean to water stress. Effects of different irrigation levels on mung bean yield and yield components and potential use of crop water stress index (CWSI) in mung bean irrigation scheduling were also investigated. Five different irrigation levels (I100, I75, I50, I25 and I0) were applied through drip irrigation system. Amount of irrigation water supplied varied between 20–445 mm. Plant water consumption (ET) values varied between 125–521 mm. The highest yield (163 kg/da) was obtained from full-irrigation (I100) and the lowest yield (39.7 kg/da) was obtained from rain-fed (I0) treatment without irrigations. Plant heights varied between 58.6–21.2 cm, the first pod heights between 17.4–29.3 cm, number of branches per plant between 1.00–2.77 and number of pods per plant between 3.2–18.9. Water use efficiency (WUE) values varied between 0.31–0.50 kg/m3 and irrigation water usage efficiency (IWUE) values varied between 0.37–0.77 kg/m3. Crop water stress index (CWSI) values varied between 0.13–0.93. The lower limit (LL) equation was obtained as Tc-Ta = −2.9674 × VPD + 4.1341 (R2 = 0.66) and the upper limit (UL) was identified as 9.7 °C. Highly significant (p < 0.01) correlations were seen between CWSI and yield. Based on present findings, I75 was recommended under water deficit conditions. CWSI values of between 0.13–0.22 can be used to initiate irrigations for drip-irrigated mung bean.

Zusammenfassung

Diese Studie wurde in der Vegetationsperiode 2018 durchgeführt, um die Reaktion der Mungbohne auf Wasserstress zu bestimmen. Außerdem wurden die Auswirkungen verschiedener Bewässerungsniveaus auf den Ertrag und die Ertragskomponenten der Mungbohne sowie die mögliche Verwendung des CWSI (Crop Water Stress Index) bei der Bewässerungsplanung für Mungbohnen untersucht. Fünf verschiedene Bewässerungsstufen (I100, I75, I50, I25 und I0) wurden über ein Tropfbewässerungssystem angewendet. Die Menge des zugeführten Bewässerungswassers variierte zwischen 20 und 445 mm. Die Werte für den Wasserverbrauch (ET) der Pflanzen variierten zwischen 125 und 521 mm. Der höchste Ertrag (163 kg/da) wurde bei Vollbewässerung (I100) erzielt, der niedrigste Ertrag (39,7 kg/da) bei der Behandlung mit Regenwasser (I0) ohne Bewässerung. Die Pflanzenhöhen variierten zwischen 58,6–21,2 cm, die Höhe der ersten Schote zwischen 17,4–29,3 cm, die Anzahl der Zweige pro Pflanze zwischen 1,00–2,77 und die Anzahl der Schoten pro Pflanze zwischen 3,2–18,9. Die Werte der Wassernutzungseffizienz (WUE) variierten zwischen 0,31–0,50 kg/m3 und die Werte der Bewässerungswassernutzungseffizienz (IWUE) zwischen 0,37–0,77 kg/m3. Die Werte des CWSI variierten zwischen 0,13 und 0,93. Die Gleichung für den unteren Grenzwert (lower limit, LL) ergab sich als Tc-Ta = −2,9674 × VPD + 4,1341 (R2 = 0,66) und der obere Grenzwert (upper limit, UL) wurde mit 9,7 °C bestimmt. Es wurden hoch signifikante (p < 0,01) Korrelationen zwischen CWSI und Ertrag festgestellt. Aufgrund der vorliegenden Ergebnisse wurde I75 unter Wasserdefizitbedingungen empfohlen. CWSI-Werte zwischen 0,13 und 0,22 können zur Einleitung von Bewässerungsmaßnahmen für tröpfchenbewässerte Mungbohnen verwendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akgündüz M (2016) Maş Fasulyesi (Vigna Radiata (L.) Wilczek) Genotiplerinin Kuraklık Hassasiyetlerinin Belirlenmesi. Ondokuz Mayıs Üniversitesi, Yüksek lisans tezi, Samsun

    Google Scholar 

  • Albinet S (2000) Effect of irrigation and fertilizer on thegrowth and yield of mungbean. Field Crop Res 12:34–40

    Google Scholar 

  • Alderfasi AA, Nielsen D (2001) Use of water stress index for monitoring water status and scheduling irrigation in wheat. Agricult Water Man 47:69–75

    Article  Google Scholar 

  • Anonymous (2004) http://www.erathnotes.tripod.com/adzuki.html. Accessed 04.02.2022

  • Argyrokastritis IG, Papastylianou PT, Alexandris S (2015) Leaf water potential and crop water stress index variation for full and deficit irrigated cotton in mediterranean conditions. Agr Agricultur Sci Proc 4:463–470

    Article  Google Scholar 

  • Braunworth Jr WS, Mack HJ (1989) The possible use of the crop water stress index as an indicator of evapotranspiration deficits and yield reduıctions in sweet corn. J Am Soc Hortic Sci 114:542–546

    Article  Google Scholar 

  • Candogan BN, Sincik M, Buyukcangaz H, Demirtas C, Goksoy AT, Yazgan S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agric Water Manag 118:113–121

    Article  Google Scholar 

  • Çolak YB, Yazar A, Çolak İ, Akça H, Duraktekin G (2015) Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agric Agric Sci Procedia 4:372–382

    Google Scholar 

  • Çolak YB, Yazar A, Alghory A, Tekin S (2021) Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrig Sci 39:81–100. https://doi.org/10.1007/s00271-020-00681-4

    Article  Google Scholar 

  • Costa M, Ortuño MF, Chaves MM (2007) Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J Integr Plant Biol 49(10):1421–1434

    Article  Google Scholar 

  • Dalkılıç M (2010) Konya Ekolojik Şartlarında Farklı Zamanlarda Ekilen Maş Fasulyesi[(Vigna radiata L.) Wilczek] Genotiplerinin Verim ve Bazı Tarımsal Özelliklerinin Belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniv. Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, Konya

    Google Scholar 

  • De Costa WAJM, Shanmugathasan KN (1999) Effects of irrigation at different growth stages on vegetative growth of mung bean, [Vigna radiata ( L.) Wilczek], in dry and intermediate zones of Sri Lanka. J Agron Crop Sci 183:111–117

    Article  Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO irrigation and drainage paper, vol 33. FAO, Rome

    Google Scholar 

  • English M, Raja SN (1996) Perspectives on deficit irrigation. Agric Water Manag 32(1):1–14

    Article  Google Scholar 

  • Erdem Y, Arin L, Erdem T, Polat S, Deveci M, Okursoy H, Gültas H (2010) Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agric Water Manag 98(1):148–156

    Article  Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58(2):147–159

    Article  CAS  PubMed  Google Scholar 

  • Gebeloğlu N, Yazgan A (1992) Mungo fasulyesinin (Vigna radiata L.) Tokat koşullarına adaptasyonu üzerinde araştırmalar I (Bitkisel özellikler). Cumhuriyet Üniversitesi Tokat Ziraat Fakültesi Dergisi 9(1):65–75

    Google Scholar 

  • Han M, Zhang H, Dejonge KC, Comas LH, Gleason S (2018) Comparison of three crop water stress index models with sap flow measurements in maize. Agric Water Manag 203:366–375

    Article  Google Scholar 

  • Howell TA, Cuenca RH, Solomon KH (1990) Crop yield response. In: Management of farm irrigation systems. ASAE, St. Joseph, pp 93–122

    Google Scholar 

  • Hu Y (2003) Food application. In: Compendium of materia medica. China Ancient Books Press, Beijing, pp 78–80

    Google Scholar 

  • Idso SB, Jackson RD, Pinter RD, Reginato RJ, Hatfield JL (1981) Normalizing the stres-degree-day parameter for environmental variability. Agric Meteorol 24:45–55

    Article  Google Scholar 

  • Islam MR, Kamal M, Alam MA, Hossain J, Soufan W, Skalicky M, Brestic M, Rahman MH, El Sabagh A, Islam MS (2021) Physiochemical changes of Mung bean [Vigna radiata (L.) R. Wilczek] in responses to varying irrigation regimes. Horticulturae 7(12):565

    Article  Google Scholar 

  • James LG (1993) Principles of farm irrigation system design. Krieger publishing company, Malarbar

    Google Scholar 

  • Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Botany 55(407):2427–2436

    Article  CAS  Google Scholar 

  • Kanemasu ET, Steiner JL, Biere AW, Woman FO, Stone JF (1983) Irrigation in the great plains. Agric Water Manag 7:157–178

    Article  Google Scholar 

  • Keller J, Bliesner RD (1990) Sprinkle and trickle irrigation. Chapman and Hall, New York

    Book  Google Scholar 

  • Kırnak H, Gençoğlan C (2003) Use of crop water stress index for scheduling irrigation in second crop corn. Har Üniv Zir Fakül Derg 5(3‑4):67–75

    Google Scholar 

  • Kirnak H, Irik HA, Unlukara A (2019) Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci Hortic 256:108608

    Article  Google Scholar 

  • Mahmoodian L, Naseri R, Mirzaei A (2012) Variability of grain yield and some important agronomic traits in mungbean (Vigna radiata L.) cultivars as affected by drought stress. Intl Res J Appl Basic Sci 3(3):486–492

    Google Scholar 

  • Maqsood M, Iqbal J, Rafiq K, Yousaf N (2000) Response of two cultivars of mungbean (Vigna radiata L.) to different irrigation levels. Pakistan J Biol Sci 3(6):1006–1007

    Article  Google Scholar 

  • Nielsen DC (1990) Scheduling irrigation for soybeans with the crop water stress index (CWSI). Field Crop Res 23:103–116

    Article  Google Scholar 

  • Nielson DC, Nelson NO (1998) Black bean sensitivity to water stress at varius growth stages. Crop Sci 38:422–427

    Article  Google Scholar 

  • Ödemiş B, Baştuğ R (1999) Assessing crop water stress and irrigation scheduling in cotton through use of infrared thermometry technique. Turk J Agricult Foresty 23(1):31–38

    Google Scholar 

  • Omid S (2008) Effect of withholding irrigation at different growth stages on yield and yield components of mungbean varieties. Am J Agric Environ Sci 4:590–594

    Google Scholar 

  • O’shaughnessy SA, Evett SR, Colaizzi PD, Howell TA (2012) A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agric Water Manag 107:122–132

    Article  Google Scholar 

  • Öztürk C (2019) Effects of nitrogen fertilizations with irrigation on yield, yield components and nodulations in dry bean (Phaseolus vulgaris L.). Ankara University, Science Inst. Field Crops Department., Ankara (Master thesis)

    Google Scholar 

  • Pekşen E, Toker C, Ceylan FÖ, Aziz T, Farooq M (2015) Determination of promising high yielded mungbean (Vigna radiata (L.) Wilczek) genotypes under Middle Black Sea Region of Turkey. Anadolu Tarım Bilimleri Dergisi 30(2):169–175

    Article  Google Scholar 

  • Ratnasekera D, Subhashi APT (2015) Morpho-physiological response of selected mungbean (Vigna radiata L.) Sri Lankan genotypes to drought stress. J Agri Search 2(3):162–194

    Google Scholar 

  • Raza MH, Sadozai GU, Baloch MS, Khan EA, Din I, Wasim K (2012) Effects of irrigation levels on growth and yield of mungbean. Pakistan J Nutr 11(10):974–977

    Article  Google Scholar 

  • Şehirali S (1988) Yemeklik Tane Baklagiller. Ankara Üniversitesi Ziraat Fakültesi Yayınları Ders Notları, Ankara

    Google Scholar 

  • Sezen SM, Yazar A, Daşgan Y, Yucel S, Akyıldız A, Tekin S, Akhoundnejad Y (2014) Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agric Water Manag 143:59–70

    Article  Google Scholar 

  • Topak R, Süheri S, Acar B (2010) Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region. Energy 35(12):5465–5471

    Article  Google Scholar 

  • Toğay N, Toğay Y, Erman M, Doğan Y, Çiğ F (2005) Kuru ve Sulu Koşullarda Farklı Bitki Sıklıklarının Bazı Nohut Cicer arietinum L. Çeşitlerinde Verim ve Verim Öğelerine Etkileri. J Agricult Sci 11(04):417–421. https://dergipark.org.tr/en/pub/ankutbd/issue/59743/861277

  • Wanjura DF, Upchurch DR, Mahan JR (1992) Automated irrigation based on threshold canopy tempearture. ASAE 35:145–152

    Google Scholar 

  • Yavuz D, Seymen M, Yavuz N, Çoklar H, Ercan M (2021) Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agric Water Manag 246:106673. https://doi.org/10.1016/j.agwat.2020.106673

    Article  Google Scholar 

  • Yazar A, Howel LTA, Dusek DA, Copeland KS (1999) Evaluation of crop water stress index for lepa irrigated corn. Irrigation Sci 18:171–180

    Article  Google Scholar 

  • Zare M, Dehghani B, Alizadeh O, Azarpanah A (2013) The evaluation of various agronomic traits of mungbean (Vigna radiata L.) genotypes under drought stress and non-stress conditions. Ijfas J 2(19):764–770

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İhsan Gölgül.

Ethics declarations

Conflict of interest

İ. Gölgül, H. Kırnak and H. Ali İrik declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gölgül, İ., Kırnak, H. & Ali İrik, H. Yield Components and Crop Water Stress Index (CWSI) of Mung Bean Grown Under Deficit Irrigations. Gesunde Pflanzen 75, 271–281 (2023). https://doi.org/10.1007/s10343-022-00698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00698-z

Keywords

Schlüsselwörter

Navigation