Skip to main content
Log in

The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Water stress is one of the most important environmental stresses which can adversely affect soil fertility and plant growth in arid and semiarid regions. In this study, biochar was used as a type of soil amendment to improve the physiology of Chestnut-leaved oak (Quercus castaneifolia C.A.M.) seedlings and soil quality in water-deficit conditions. A randomized complete block design was conducted using three water regime treatments [100, 70 and 40% field capacity (FC)] and four application rates of produced biochar from hornbeam wood chips (control without biochar, B1, B2 and B3 with 10, 20 and 30 g kg−1 soil, respectively) in potted seedlings. The soil water-holding capacity in the 30 g kg−1 biochar was found to be higher than that in the non-biochar treatment under 100 and 40% FC. Water supply reduction to 40% FC decreased the soil total N, the available P and K, CEC, SOC and microbial respiration, as compared to the non-biochar soil used as the control; however, an increase in the B3 treatment was detected in the soil P and K at 100% FC. Severe water deficit (40% FC) induced a significant decrease in photosynthesis, transpiration, stomatal conductance and xylem water potential seedlings; even, in this case, the addition of the highest dose of biochar under the lowest water supply increased photosynthesis and stomatal conductance by 38% and 39%, respectively. Leaf nutrient concentration was also influenced by the treatment. The highest diameter and height growth and dry weight of the seedlings were observed in 100 and 40% FC under the B3 treatment. Plant biomass of the seedlings treated by B3 was increased by 55, 70 and 73%, in comparison with those attained by the control under 100, 70 and 40% FC irrigation, respectively. Generally, the use of the 30 g kg−1 biochar in the soil could alleviate the negative effects of water deficit and improve the growth of Q. castaneifolia seedling and soil quality with increasing the soil water-holding capacity, organic carbon and nutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Agegnehu G, Srivastava A, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Article  Google Scholar 

  • Alef K (1995) Soil Respiration. In: Alef K, Nannipieri P (eds) Methods in soil microbiology and biochemistry. Academic Press, San Diego, pp 214–215

    Google Scholar 

  • Allison LE (1975) Organic carbon. In: Black CA (ed) Methods of soil analysis: part 2. American Society of Agronomy, Madison, pp 1367–1378

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ASTM (2010) Laboratory determination of water (moisture) content of soil and rock by mass. In: D 2216—10. ASTM International, West Conshohocken

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Banon S, Ochoa J, Franco J, Alarcon J, Sánchez-Blanco MJ (2006) Hardening of oleander seedlings by deficit irrigation and low air humidity. Environ Exp Bot 56(1):36–43

    Article  Google Scholar 

  • Baronti S, Vaccari F, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44

    Article  CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water holding capacity of sandy soils. GCB Bioenergy 5(2):132–143

    Article  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Batool A, Taj S, Rashid A, Khalid A, Qadeer S, Saleem AR, Ghufran MA (2015) Potential of soil amendments (biochar and gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front Plant Sci 6:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackwell P, Riethmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology, 2nd edn. Earthscan, London, pp 207–226

    Google Scholar 

  • Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Sci 73:251–262

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen—total. In: Page AL, Miller RH, Keeney RR (eds) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Changxun G, Zhiyong P, Shu’ang P (2016) Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil. J Soil Sci Plant Nutr 62(2):194–200

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1962) Methods of analysis for soils, plants and waters. Soil Sci 93(1):68

    Article  Google Scholar 

  • Chatzopoulos F, Fugit JF, Ouillous L (2000) Etu deocation function do different parameters dolabsption et alla desorption do sodium retitule. Eur Polym J 36:51–60

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610

    Article  CAS  Google Scholar 

  • Chu TM, Aspinall D, Paleg L (1974) Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. Funct Plant Biol 1(1):87–97

    Article  CAS  Google Scholar 

  • Clough T, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agron J 3:275–293

    Article  CAS  Google Scholar 

  • Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Danish S, Ameer A, Qureshi TI, Younis U, Manzoor H, Shakeel A, Ehsanullah M (2014) Influence of biochar on growth and photosynthetic attributes of Triticum aestivum L. under half and full irrigation. Int J Biosci 5(7):101–108

    Article  CAS  Google Scholar 

  • Davis JG, Whiting D (2013) Gardening services, Colorado State University, US Department of Agriculture and Colorado Countries Cooperating. Fact sheet number 7: 235

  • de Melo Carvalho M, de Holanda Nunes A, Madari B, Bastiaans L, Van Oort P, Heinemann A, Soler da Silva M, Petter F, Marimon B Jr, Meinke H (2014) Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system. Solid Earth 5(2):939–952

    Article  Google Scholar 

  • de Souza CR, Maroco JP, dos Santos TP, Rodrigues ML, Lopes C, Pereira JS, Chaves MM (2005) Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric Ecosyst Environ 106(2–3):261–274

    Article  CAS  Google Scholar 

  • Deligöz A, Bayar E (2018) Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turk J Agric For 42(2):114–123

    Article  CAS  Google Scholar 

  • Deligoz A, Gur M (2015) Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta Physiol Plant 37:243

    Article  CAS  Google Scholar 

  • Dempster DN, Jones DL, Murphy DV (2012) Clay and biochar amendments decreased inorganic bout not dissolved organic nitrogen leaching in soil. Soil Res 50:216–221

    Article  CAS  Google Scholar 

  • Din J, Khan S, Ali I, Gurmani A (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21(1):78–82

    Google Scholar 

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B (2016) Biochar to improve soil fertility. A review. Agron Sustain Dev 36(2):1–18

    Article  CAS  Google Scholar 

  • Elfeel AA, Al-Namo ML (2011) Effect of imposed drought on seedlings growth, water use efficiency and survival of three arid zone species (Acacia tortilis subsp raddiana, Salvadora persica and Leptadenia pyrotechnica). Agric Biol J N Am 2(3):493–498

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1):9–19

    Article  PubMed  Google Scholar 

  • Fallahi H-R, Taherpour R, Kalantari R, Aghhavani Shajar M, Soltanzadeh MG (2015) Effect of super absorbent polymer and irrigation deficit on water use efficiency, growth and yield of cotton. Not Sci Biol 7(3):338–344

    Article  CAS  Google Scholar 

  • Ferreira WN, CF de Lacerda, RC da Costa SM Filho (2015) Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest. Acta Bot Bras 29(3):375–382

    Article  Google Scholar 

  • Flexas J, Barón M, Bota J, Ducruet JM, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J Exp Bot 60(8):2361–2377

    Article  CAS  PubMed  Google Scholar 

  • Garau AM, Lemcoff JH, Ghersa CM, Beadle CL (2008) Water stress tolerance in Eucalyptus globulus Labill. subsp. Maidenii (F. Muell.) saplings induced by water restrictions imposed by weeds. For Ecol Manag 255:2811–2819

    Article  Google Scholar 

  • Gardner CMK, Laryea KB, Unger PW (1999) Soil physical constraints to plant growth and crop production. FAO AGL/MISC/ 24/99. Rome, Italy

  • Gebhardt M, Fehmi JS, Rasmussen C, Gallery RE (2017) Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland. Plant Soil 419(1–2):53–70

    Article  CAS  Google Scholar 

  • Ghanbary E, Tabari Kouchaksaraei M, Mirabolfathy M, Modarres Sanavi SAM, Rahaei M (2017) Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For Pathol 47(5):1–11

    Article  Google Scholar 

  • Ghanbary E, Kouchaksaraei MT, Guidi L, Mirabolfathy M, Etemad V, Sanavi SAMM, Struve D (2018) Change in biochemical parameters of Persian oak (Quercus brantii Lindl.) seedlings inoculated by pathogens of charcoal disease under water deficit conditions. Trees 32(6):1595–1608

    Article  CAS  Google Scholar 

  • Ghosh S (2012) An introduction to biochar and its potential as soil amendment. CUGE research technical note, urban greenery series RTN:01-2012

  • Grant RF, Rochette P (1994) Soil microbial respiration at different temperatures and water potentials: theory and mathematical modelling. Soil Sci Soc Am J 58:1681–1690

    Article  CAS  Google Scholar 

  • Hafeez Y, Iqbal S, Jabeen K, Shahzad S, Jahan S, Rasul F (2017) Effect of biochar application on seed germination and seedling growth of Glycine max (L.) merr. under drought stress. Pak J Bot 49:7–13

    CAS  Google Scholar 

  • Haider G, Koyro HW, Azam F, Steffens D, Müller C, Kammann C (2015) Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 395:141–157

    Article  CAS  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Ibrahim HM, Al-Wabel MI, Usman AR, Al-Omran A (2013) Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173

    Article  CAS  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

  • Jafarnia S, Akbarinia M, Hosseinpour B, Modarres Sanavi SAM, Salami SA (2018) Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. I Forest 11:212–220

    Google Scholar 

  • Jassa RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008) Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob Change Biol 14:1–14

    Google Scholar 

  • Jeffery S, Verheijen FG, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Jones DL, Rousk J, Edwards JG, Deluca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Kammann CI, Linsel S, Gößling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 345:195–210

    Article  CAS  Google Scholar 

  • Kannan V, Srinivasan G, Babu R, Thiyageshwari S, Sivakumar T (2017) Effect of biochar, mulch and PPFM spray on leaf relative water content, leaf proline, chlorophyll stability index and yield of cotton under moisture stress condition. Curr Microbiol 6(6):604–611

    CAS  Google Scholar 

  • Kanthle AK, Lenka NK, Lenka S, Tedia K (2016) Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil Tillage Res 157:65–72

    Article  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Laird DA, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma 158(3–4):436–442

    Article  CAS  Google Scholar 

  • Lawrinenko M (2014) Anion exchange capacity of biochar. Dissertations. University of Lowa State (USA)

  • Lehmann J, Joseph S (2009) Biochar for environmental management. Earthscan, London

    Google Scholar 

  • Lehmann J, da Silva JP, Jr C, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems: a review. Mitig Adapt Strateg Glob Change 11:395–419

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Licht J, Smith N (2017) The influence of lignocellulose and hemicellulose biochar on photosynthesis and water use efficiency in seedlings from a Northeastern U.S. pine-oak ecosystem. J Sustain For 37(1):25–37

    Article  Google Scholar 

  • Lyu S, Du G, Liu Z, Zhao L, Lyu D (2016) Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiol Plant 38:220

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333(1–2):117–128

    Article  CAS  Google Scholar 

  • Mannan MA, Halder E, Karim MA, Ahmed JU (2016) Alleviation of adverse effect of drought stress on soybean (Glycine max. L.) by using poultry biochar. Bangladesh Agron 19(2):61–69

    Article  Google Scholar 

  • Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable chat residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  CAS  PubMed  Google Scholar 

  • Mensah AK, Frimpong KA (2018) Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int J Environ Agric Res 2018:1–8

    Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • Nazari H, Zardashti MR, Darvishzadeh R, Najafi S (2010) The effect of water stress and polymer on water use efficiency, yield and several morphological traits on sunflower. Not Sci Biol 2:53–58

    Article  Google Scholar 

  • Niinemets U, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Niinemets U, Ellsworth DS, Lukjanova A, Tobias M (2001) Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol 21:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci 61:1659–1672

    Article  CAS  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MA (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112

    Article  CAS  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Ohashi M, Kume T, Yoshifuji N, Kho LK, Nakagawa M, Nakashizuka T (2014) The effects of an induced short-term drought period on the spatial variations in soil respiration measured around emergent trees in a typical Bornean tropical forest, Malaysia. Plant Soil 387:337–349

    Article  CAS  Google Scholar 

  • Ohsowski BM, Klironomos JN, Dunfield KE, Hart MM (2012) The potential of soil amendments for restoring severely disturbed grasslands. Appl Soil Ecol 60:77–83

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Al P, Miller RH, Keaney DR (eds) Methods of soil analysis, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  • Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Article  Google Scholar 

  • Pandian K, Subramaniayan P, Gnasekaran P, Chitraputhirapillai S (2016) Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch Agron Soil Sci 62(9):1293–1310

    Article  CAS  Google Scholar 

  • Pandit NR, Mulder J, Hale SE, Martinsen V, Schmidt HP, Cornelissen G (2018) Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci Total Environ 625:1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Paneque M, José M, Franco-Navarro JD, Colmenero-Flores JM, Knicker H (2016) Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. CATENA 147:280–287

    Article  CAS  Google Scholar 

  • Parad GA, Zarafshar M, Striker GG, Sattarian A (2013) Some physiological and morphological responses of Pyrus boissieriana to flooding. Trees Struct Funct 27(5):1387–1393

    Article  Google Scholar 

  • Parad GA, Tabari Kouchaksaraei M, Striker GG, Sadati SE, Nourmohammadi K (2015) Growth, morphology and gas exchange responses of two-year-old Quercus Castaneifolia seedlings to flooding stress. Scand J For Res 31(5):458–466

    Article  Google Scholar 

  • Pereira RG, Heinemann AB, Madari BE, Carvalho MTM, Kliemann HJ, dos Santos AP (2012) Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar. Pesqui Agropecu Bras 47:716–721

    Article  Google Scholar 

  • Plaster EJ (1985) Soil science and management. Delmar, Albany

    Google Scholar 

  • Polat EM, Demir KH, Onus NA (2004) Use of natural zeolite (clinoptilolite) in agriculture. J Fruit Ornam Plant Res 12:183–189

    CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  PubMed  Google Scholar 

  • Rath KM, Rousk J (2015) Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol Biochem 8:108–123

    Article  CAS  Google Scholar 

  • Rezaei Rashti M, Esfandbod M, Phillips IR, Chen C (2019) Biochar amendment and water stress alter rhizosphere carbon and nitrogen budgets in bauxite-processing residue sand under rehabilitation. J Environ Manag 230:446–455

    Article  CAS  Google Scholar 

  • Sagheb Talebi K, Sajedi T, Pourhashemi M (2014) Forests of Iran. Springer, Dordrecht

    Book  Google Scholar 

  • Seehausen ML, Gale NV, Dranga S, Hudson V, Liu N, Michener J, Thurston E, Williams C, Smith SM, Thomas SC (2017) Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agron J 7(13):1–15

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum) genotypes during two vegetative-growth stages at water deficit. Colloids Surf B 43(3–4):221–227

    CAS  Google Scholar 

  • Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA (2015) Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci 16:10214–10227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberbush M, Adar E, De Malach Y (1993) Use of a hydrophilic polymer to improve water storage and availability to crops grown in sand dunes. I. Corn irrigated by trickling. Agric Water Manag 23:303–313

    Article  Google Scholar 

  • Slavich PG, Sinclair K, Morris SG, Kimber SWL, Downie A, Van Zwieten L (2013) Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366(1–2):213–227

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron J 105:47–82

    Article  CAS  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortun AM, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tahir S, Gul S, Aslam Ghori S, Sohail M, Batool S, Jamil N, Naeem Shahwani M, Rehman Butt M (2018) Biochar influences growth performance and heavy metal accumulation in spinach under wastewater irrigation. Soil Crop Sci 4:1–12

    Google Scholar 

  • Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environ Exp Bot 111:114–126

    Article  Google Scholar 

  • Tayyab M, Islam W, Khalil F, Ziqin P, Caifang Z, Arafat Y, Hui L, Rizwan M, Ahmad K, Waheed S (2018) Biochar: an efficient way to manage low water availability in plants. Appl Ecol Environ Res 16:2565–2583

    Article  Google Scholar 

  • Thies JE, Rillig M (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Econ Manag 129:62–68

    CAS  Google Scholar 

  • Tian X, Li C, Zhang M, Wan Y, Xie Z, Chen B, Li W (2018) Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 13(1):e0189924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tom-Dery D, Abdul-Rafiq M, Asante WJ, Issifu H, Ochire-Boadu K (2015) Effect of Albizia lebbeck pods used as soil amendment on growth of Solanum Aethiopicum (Garden eggs). UDSIJD 2(1):12–19

    Google Scholar 

  • Uzoma K, Inoue M, Andry H, Zahoor A, Nishihara E (2011) Influence of biochar application on sandy soil hydraulic properties and nutrient retention. JFAE 9(3–4):1137–1143

    CAS  Google Scholar 

  • Vassilev N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J Sci Food Agric 93:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Ventura M, Zhang C, Baldi E, Fornasier F, Sorrenti G, Panzacchi P, Tonon G (2014) Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur J Soil Sci 65(1):186–195

    Article  CAS  Google Scholar 

  • Walinga I, Van der Lee JJ, Houba VJG, Van Vark W, Novozamsky I (1995) Soil and plant analysis. Wageningen Agriculture University, Wageningen

    Google Scholar 

  • Walter R, Rao BKR (2015) Biochars influence sweet-potato yield and nutrient uptake in tropical Papua New Guinea. J Plant Nut Soil Sci 178(3):393–400

    Article  CAS  Google Scholar 

  • Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–187

    Article  CAS  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth. PLoS ONE 9(2):e89185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu M, Zhang W, Ma C, Zhou J (2013) Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russ J Plant Physiol 60(5):681–692

    Article  CAS  Google Scholar 

  • Xu C-Y, Hosseini-Bai S, Hao Y, Rachaputi RC, Wang H, Xu Z, Wallace H (2015) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut R 22(8):6112–6125

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  PubMed  Google Scholar 

  • Zarehaghi D, Neyshabouri MR, Sadeghzadeh Reyhan ME, Hassanpour R (2015) Effect of pumice on water holding capacity in soil, growth and yield of spring Safflower in dry land conditions. EJSMS 5(3):192–204

    Google Scholar 

  • Zarik L, Meddich A, Hijri M, Hafidi M, Ouhammou A, Ouahmane L, Duponnois R, Boumezzough A (2016) Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C R Biol 339:185–196

    Article  PubMed  Google Scholar 

  • Zhu QH, Peng X-H, Huang T, Xie ZB, Holden NM (2014) Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 24(6):699–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohsen Hosseini.

Additional information

Communicated by Agustín Merino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoghi, Z., Hosseini, S.M., Kouchaksaraei, M.T. et al. The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress. Eur J Forest Res 138, 967–979 (2019). https://doi.org/10.1007/s10342-019-01217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01217-y

Keywords

Navigation