Skip to main content

Advertisement

Log in

Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study investigated, in a Pinus laricio forest of south Italy, how systematic thinning of different intensities (intense thinning, T45; moderate thinning, T25; clear cut, CC; and no thinning, T0) affected soil biological properties, organic matter trend and carbon (C) storage in soil and plants. Soil carbon content and carbon/nitrogen (C/N) ratio were significantly higher in the T45 than in control, T25 and CC. Under T45, the soils had also the highest enzymatic activities, microbial biomass carbon (MBC) and colonies of fungi and bacteria. The humification parameters (humification ratio, HR; the degree of humification, DH; humification index, HI) indicated T45 as the best silvicultural practice-approach method to manage Pinus laricio forest for increasing soil carbon storage. The dendrometric parameters evidenced that T45 caused the greatest increment in wood growth (diameter and height), showing that the positive effect of the intense systematic thinning (T45) on the mechanical stability of plantation was related to the ability of trees to accumulate large amounts of carbon in their wood tissues. These data were confirmed by wood density value that was the highest in pine trees under the T45. This study showed that in Pinus laricio forest under T45 C stock increased in soil and plant, already 4 years after thinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep 5(1–10):15991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    Article  CAS  Google Scholar 

  • Ajwa HA, Dell CJ, Rice CW (1999) Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777

    Article  CAS  Google Scholar 

  • Alemu B (2014) The role of forest and soil carbon sequestrations on climate change mitigation. J Environ Earth Sci 4:98–111

    Google Scholar 

  • Allison SD (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry 81:361–373

    Article  CAS  Google Scholar 

  • Alvear M, Rosas A, Rouanet JL, Borie F (2005) Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Till Res 82:195–202

    Article  Google Scholar 

  • Ashagrie Y, Zech W, Guggenberger G, Miano T (2007) Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Till Res 94:101–108

    Article  Google Scholar 

  • Balboa-Murias MA, Rodríguez-Soalleiro R, Merino A, Álvarez-González JG (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manage 237:29–38

    Article  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287

    Article  Google Scholar 

  • Beck T (1971) Die Messung der Katalaseaktivität von Böden. Z Pflanzenernähr Bodenkd 130:68–81

    Article  CAS  Google Scholar 

  • Billings SA, Lichter J, Ziegler SE, Hungate BA, de Richter BD (2010) A call to investigate drivers of soil organic matter retention versus mineralization in a high CO2 world. Soil Biol Biochem 42:665–668

    Article  CAS  Google Scholar 

  • Birdsey R, Pregitzer K, Lucier A (2006) Forest carbon management in the United States: 1600–2100. J Environ Qual 35:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. New Zealand Soil Bureau, Scientific report, p 80

  • Boujoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. J Agron 54:464–465

    Article  Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest. For Ecol Manage 196:43–56

    Article  Google Scholar 

  • Box JD (1983) Investigation of the Folin—Ciocalteau reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Bradford J, Weishampel P, Smith M, Kolka R, Birdsey RA, Ollinger SV, Ryan MG (2009) Detrital C pools in temperate forests: magnitude and potential for landscape-scale assessment. Can J For Res 39:802–813

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: Part 2-chemical and microbiological properties, 2nd edn. Soil Science Society of America, Madison, pp 595–624

    Google Scholar 

  • Cantiani P, Chiavetta U (2015) Estimating the mechanical stability of Pinus nigra Arn. using an alternative approach across several plantations in central Italy. iForest 8:846–852

    Article  Google Scholar 

  • Chapin FS, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology. Springer, New York

    Book  Google Scholar 

  • Ciavatta C, Govi M (1993) Use of insoluble polyvinylpyrrolidone and isoelectric focusing in the study of humic substances in soils and organic wastes: a review. J Chromatogr 643:261–270

    Article  CAS  Google Scholar 

  • Ciavatta C, Govi M, Vittori Antisari L, Sequi P (1990) Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. J Chromatogr 509:141–146

    Article  CAS  Google Scholar 

  • Clarke N, Gundersen P, Jönsson-Belyazid U, Kjønaas OJ, Persson T, Sigurdsson BJ, Stupak I, Vesterdal L (2015) Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. For Ecol Manage 351:9–19

    Article  Google Scholar 

  • Darbyshire JF, Chapman SJ, Cheshire MV, Gauld JH, McHardy WJ, Paterson E, Vaughan D (1993) Methods for the study of interrelationships between micro-organisms and soil structure. In: Brussard L, Kooistra MJ (eds) Soil structure/soil biota relationships. Elsevier, Amsterdam

    Google Scholar 

  • Davis SC, Hessl AE, Scott CJ, Adams MB, Thomas RB (2009) Forest carbon sequestration changes in response to timber harvest. For Ecol Manage 258:2101–2109

    Article  Google Scholar 

  • De Deyn GB, Quirk H, Yi Z, Oakley S, Ostle NJ, Bardgett RD (2009) Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J Ecol 97:864–875

    Article  CAS  Google Scholar 

  • de Figueiredo CC, Resck DVS, Carneiro MAC (2010) Labile and stable fractions of soil organic matter under management systems and native Cerrado. Rev Bras Ciênc Solo 34:907–916

    Article  Google Scholar 

  • de Graaff MA, Adkins J, Kardol P, Throop HL (2015) A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1:257–271

    Article  CAS  Google Scholar 

  • Deng SP, Tabatabai MA (1994) Cellulase activity in soils. Soil Biol Biochem 26:1347–1354

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AW (2005) Standard methods for the examination of water and wastewater. APHA, Washington, DC

    Google Scholar 

  • Elliott ML, Des Jardin EA (1999) Comparison of media and diluents for enumeration of aerobic bacteria from bermuda grass golf course putting greens. J Microbiol Methods 34:193–202

    Article  CAS  Google Scholar 

  • Fellin M (2005) Radio-densitometry of wood: calibration and characterization of an experimental laboratory device. Dissertation, University of Padova

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Gigliotti G, Businelli D, Giusquiani PG (1999) Composition changes of soil humus after massive application of urban waste compost: a comparison between FT-IR spectroscopy and humification parameters. Nutr Cycl Agroecosyst 55:23–28

    Article  Google Scholar 

  • Gough CM, Vogel CS, Schmidt HP, Curtis PS (2008) Controls on annual forest C storage: lessons from the past and predictions for the future. Bioscience 58:609–621

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55:378–390

    Google Scholar 

  • Hurteau M, North M (2009) Fuel treatment effects on tree-based forest C storage and emissions under modeled wildfire scenarios. Front Ecol Environ 7:409–414

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World soil resources reports no. 103. FAO, Rome

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jassal RS, Black TA, Cai T, Morgenstern K, Li Z, Gaumont-Guay D, Nesic Z (2007) Components of ecosystem respiration and an estimate of net primary productivity of an intermediate-aged Douglas-fir stand. Agric For Meteorol 144:44–57

    Article  Google Scholar 

  • Jimenez RMD, Fita A, Burruezo AR (2016) Geophysical research abstracts Vol. 18, EGU 2016-14848, Enzyme activities by indicator of quality in organic soil. EGU General Assembly 2016

  • Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120

    Article  CAS  Google Scholar 

  • Kaminsky R, Muller WH (1978) A recommendation against the use of alkaline soil extraction in the study of allelopathy. Plant Soil 49:641–645

    Article  CAS  Google Scholar 

  • Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999) Tillage changes microbial biomass and enzyme activities in particle size fractions. Soil Biol Biochem 31:1253–1264

    Article  CAS  Google Scholar 

  • Keith H, Jacobsen KL, Raison RJ (1997) Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190:127–141

    Article  CAS  Google Scholar 

  • Kim C, Son Y, Lee WK, Jeong J, Noh NJ (2009) Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. For Ecol Manage 257:1420–1426

    Article  Google Scholar 

  • Kirschbaum MUF (1996) The carbon sequestration potential of tree plantations in Australia. In: Eldridge KG, Crowe MP, Old KM (eds) Environmental management: the role of Eucalypts and other fast growing species. CSIRO Publishing, Canberra, pp 77–89

    Google Scholar 

  • Krug G, Koehl M, Kownatzki D (2012) Revaluing unmanaged forests for climate change mitigation. Carbon Balance Manag 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258

    Article  Google Scholar 

  • Lal R (2006) Soil carbon sequestration in Latin America. In: Lal R, Cerri CC, Bernoux M, Etcheves J, Cerri E (eds) Carbon sequestration in soils of Latin America. CRC Press, New York, pp 49–64

    Google Scholar 

  • Lee KA, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For Ecol Manage 185:263–273

    Article  Google Scholar 

  • Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture andstorage technologies. Renew Sustain Energy Rev 39:426–443

    Article  CAS  Google Scholar 

  • Mäkipää R, Linkosalo T, Komarov A, Mäkelä A (2014) Mitigation of climate change with biomass harvesting in Norway spruce stands: Are harvesting practices carbon neutral? Can J For Res 45:1–9

    Google Scholar 

  • Mehlich A (1953) Rapid determination of cation and anion exchange properties and pH of soils. J Assoc Off Agric Chem 36:445–457

    CAS  Google Scholar 

  • Muscolo A, Sidari M, Mercurio R (2007a) Gap size effects on above- and below-ground processes in a silver fir stand. Eur J For Res 126:59–65

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Mercurio R (2007b) Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. For Ecol Manage 242:412–418

    Article  Google Scholar 

  • Muscolo A, Sidari M, Bagnato S, Mallamaci C, Mercurio R (2010) Gap size effects on above- and below-ground processes in a silver fir stand. Eur J For Res 129:355–365

    Article  Google Scholar 

  • Muscolo A, Panuccio MR, Mallamaci C, Sidari M (2014) Biological indicators to assess short-term soil quality changes in forest ecosystems. Ecol Ind 45:416–423

    Article  CAS  Google Scholar 

  • Muscolo A, Settineri G, Attinà E (2015) Early warning indicators of changes in soil ecosystem functioning. Ecol Ind 48:542–549

    Article  CAS  Google Scholar 

  • Muscolo A, Settineri G, Bagnato S, Mercurio R, Sidari M (2017) Use of canopy gap openings to restore coniferous stands in Mediterranean environment. iForest 10:322–327

    Article  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: Part 2-chemical and microbiological properties, 2nd edn. Soil Science Society of America, Madison, pp 539–580

    Google Scholar 

  • Nilsen P, Strand LT (2008) Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years. For Ecol Manage 256:201–208

    Article  Google Scholar 

  • North M, Hurteau M, Innes J (2009) Fire suppression and fuels treatment effects on mixed-conifer C stocks and emissions. Ecol Appl 19:1385–1396

    Article  PubMed  Google Scholar 

  • Pavari A (1959) Le classificazioni fitoclimatiche ed i caratteri della stazione [Phytoclimatic classifications and station characteristics]. Scritti di ecologia selvicoltura e botanica forestale, pp 45–116

  • Picci G, Nannipieri P (2003) Metodi di analisi microbiologica del suolo. Franco Angeli Editore, Milano

    Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Chang Biol 10:2052–2077

    Article  Google Scholar 

  • Qiu S, Bell RW, Hobbs RJ, Mccomb AJ (2011) Estimating nutrient budgets for prescribed thinning in a regrowth eucalyptus forest in south-west Australia. Forestry 85:51–61. doi:https://doi.org/10.1093/forestry/cpr054

    Article  Google Scholar 

  • Resck DVS, Ferreira EAB, Figueiredo CC, Zinn YL (2008) Dinâmica da matéria orgânica no Cerrado. In: Santos GA, Silva LS, Canellas LP, Camargo FO (eds) Fundamentos da matéria organic do solo: Ecossistemas tropicais e subtropicais, 2nd edn. Metrópole, Porto Alegre, pp 359–417

    Google Scholar 

  • Roscoe R, Buurman P (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Till Res 70:107–119

    Article  Google Scholar 

  • Rowland L, Hill TC, Stahl C, Siebicke L, Burban B, Zaragoza-Castel J, Ponton S, Bonal D, Meir P, Mathew Williams M (2014) Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Glob Chang Biol 20(3):979–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu SR, Concilio A, Chen J, North M, Ma S (2009) Prescribed burning and mechanical thinning effects on belowground conditions and soil respiration in a mixed-conifer forest, California. For Ecol Manage 257:1324–1332. doi:https://doi.org/10.1016/j.foreco.2008.11.033

    Article  Google Scholar 

  • Selig MF, Seiler JR, Tyree MC (2008) Soil C and CO2 efflux as influenced by the thinning of loblolly pine (Pinus taeda L.) plantations in the Piedmont of Virginia. Forest Sci 54:58–66

    Google Scholar 

  • Sicardi M, García-Préchac F, Frioni L (2004) Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Appl Soil Ecol 27:125–133

    Article  Google Scholar 

  • Sidari M, Muscolo A, Cianci V, Attinà E, Vecchio G, Zaffina F (2005) Evoluzione della sostanza organica in suoli rappresentativi dell’Altopiano della Sila. Forest@ 2:296–305

    Article  Google Scholar 

  • Six J, Callewaert P, Lenders S, Gryze SD, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. Freeman, San Francisco

    Google Scholar 

  • Springer U, Klee J (1954) Prüfung der leistungsfähigkeit von einigen wichtigen verfahren zur bestimmung des kohlenstoffs mittels chromschwefelsaure sowie vorschlag einer neuen schnellmethode. J Plant Nutr Soil Sci 64:1–26

    CAS  Google Scholar 

  • Sullivan BW, Kolb TE, Hart SC, Kaye JP, Dore S, Montes-Helu M (2008) Thinning reduces soil C dioxide but not methane flux from southwestern USA ponderosa pine forests. For Ecol Manage 255:4047–4055

    Article  Google Scholar 

  • Suzanne MO, Carolyn HS, Catherine AG, Matthew AB (2009) Above- and belowground responses to tree thinning depend on the treatment of tree debris. For Ecol Manage 259:71–80

    Article  Google Scholar 

  • Tang J, Qi Y, Xu M, Misson L, Goldstein AH (2005) Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiol 25:57–66

    Article  PubMed  CAS  Google Scholar 

  • Tian DL, Peng YY, Yan WD, Fang X, Kang WX, Wang GJ, Chen XY (2010) Effects of thinning and litter fall removal on fine root production and soil organic carbon content in Masson pine plantations. Pedosphere 20:486–493

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Von Mersi W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol Fertil Soils 11:216–220

    Article  Google Scholar 

  • Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Whorf TP, Keeling CD (1998) Rising carbon. New Sci 157:54

    Google Scholar 

  • You Y, Wang J, Huang X, Tang Z, Liu S, Sun OJ (2014) Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol Evol 4:633–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Hao Y, Jia Z, Ma L, Jia F (2014) Soil properties responding to Pinus tabulaeformis forest thinning in mountainous areas, Beijing. Adv J Food Sci Technol 6:1219–1227

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technological Development of Serbia, Grant No. 173018 and by Ph.D. scholarship DIBAF, UNITUS Viterbo, Italy. Authors thank two anonymous reviewers for their stimulating comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Muscolo.

Additional information

Communicated by Agustín Merino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settineri, G., Mallamaci, C., Mitrović, M. et al. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy. Eur J Forest Res 137, 131–141 (2018). https://doi.org/10.1007/s10342-017-1077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1077-9

Keywords

Navigation