Skip to main content
Log in

Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Plant–plant chemical interactions in forests can have a strong impact on the biodiversity and dynamics of these ecosystems, particularly in Mediterranean forests where plants exhibit a high secondary metabolite diversity. Allelopathic interactions in Mediterranean ecosystems have been mostly studied in the first stages of ecosystem dynamics, shrublands and pine forests, but little is known about these interactions in mature oak forests. In this study, the allelopathic effect of three main woody species of downy oak forests (Quercus pubescens, Acer monspessulanum and Cotinus coggygria) on germination and growth of two herbaceous species (Festuca ovina and Linum perenne) was tested through aqueous extracts obtained from different leaf phenological stages (green, senescent and litter). The germination velocity of the two target species was inhibited by the aqueous extracts of senescent leaves from all the woody species. The growth of F. ovina seedlings was affected by aqueous extracts of green leaves of all the woody species, while the growth of L. perenne was only affected by aqueous extracts of green leaves of A. monspessulanum. This shows that (i) allelochemicals released by leaf leachates of the dominant woody species could control the dynamic of the herbaceous species, and then their potential competition with trees and (ii) allelopathic effects of woody species are related to their phenological stage and seem consistent with the development stage of target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alías JC, Sosa T, Escudero JC, Chaves N (2006) Autotoxicity against germination and seedling emergence in Cistus ladanifer L. Plant Soil 282:327–332. doi:10.1007/s11104-005-6066-y

    Article  Google Scholar 

  • Araniti A, Sorgona A, Lupini A, Abenavoli MR (2012) Screening of Mediterranean wild plant species for allelopathic activity and their use as bio-herbicides. Allelopath J 29:107–124

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plants: from genes to invasion. Science 301:1377–1380. doi:10.1126/science.1083245

    Article  CAS  PubMed  Google Scholar 

  • Balandier P, Collet C, Miller JH, Reynolds PE, Zedaker SM (2006) Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 79:3–27. doi:10.1093/forestry/cpi056

    Article  Google Scholar 

  • Beaudet M, Harvey BD, Messier C, Coates KD, Poulin J, Kneeshaw DD, Brais S, Bergeron Y (2011) Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: a modelling approach. For Ecol Manag 261:84–94. doi:10.1016/j.foreco.2010.09.033

    Article  Google Scholar 

  • Beninger CW, Hall JC (2005) Allelopathic activity of luteolin 7-O-β-glucuronide isolated from Chrysanthemum morifolium L. Biochem Syst Ecol 33:103–111

    Article  CAS  Google Scholar 

  • Bousquet-Mélou A, Sophie L, Robles C, Greff S, Dupouyet S, Fernandez C (2005) Allelopathic Potential of Medicago Arborea, a Mediterranean Invasive Shrub. Chemoecology 15:193–198. doi:10.1007/s00049-005-0311-y

    Article  Google Scholar 

  • Bulut Y, Demir M (2007) The Allelopathic Effects of Scots Pine (Pinus sylvestris L.) Leaf Extracts on Turf grass Seed Germination and Seedling Growth. Asian J Chem 19:3169–3177

    CAS  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965. doi:10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2

    Article  Google Scholar 

  • Carballeira A, Reigosa MJ (1999) Effects of natural leachates of Acacia dealbata link in Galicia (NW Spain). Bot Bull Acad Sin 40:87–92

    Google Scholar 

  • Chaves N, Escudero JC (1999) Variation of flavonoid synthesis induced by ecological factors. In: Inderjit S, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology. CRC Press, Boca Raton, pp 267–285

    Google Scholar 

  • Chaves N, Sosa T, Escudero JC (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J Chem Ecol 27:623–631. doi:10.1023/A:1010388905923

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020. doi:10.3389/fpls.2015.01020

    PubMed  PubMed Central  Google Scholar 

  • Chomel M, Fernandez C, Bousquet-Mélou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424. doi:10.1111/1365-2745.12205

    Article  Google Scholar 

  • Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, Desrochers A, Paré D, Jackson B, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104:1527–1541. doi:10.1111/1365-2745.12644

    Article  Google Scholar 

  • Chou C (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture source. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  • Coll L, Balandier P, Picon-Cochard C, Prévosto B, Curt T (2003) Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann For Sci 60:593–600. doi:10.1051/forest:2003051

    Article  Google Scholar 

  • Cuesta B, Villar-Salvador P, Puértolas J, Rey Benayas JM, Michalet R (2010) Facilitation of Quercus ilex in Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. J Ecol 98:687–696. doi:10.1111/j.1365-2745.2010.01655.x

    Article  Google Scholar 

  • Deng F, Aoki M, Yogo Y (2004) Effect of naringenin on the growth and lignin biosynthesis of gramineous plants. Weed Biol Manag 4:49–55. doi:10.1111/j.1445-6664.2003.00119.x

    Article  CAS  Google Scholar 

  • Dias FS, Miller DL, Marques TA, Marcelino J, Caldeira MC, Cerdeira JO, Bugalho MN (2016) Conservation zones promote oak regeneration and shrub diversity in certified Mediterranean oak woodlands. Biol Conserv 195:226–234. doi:10.1016/j.biocon.2016.01.009

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. doi:10.18637/jss.v022.i04

    Article  Google Scholar 

  • Ehlers BK, Charpentier A, Grøndahl E (2013) An allelopathic plant facilitates species richness in the Mediterranean garrigue. J Ecol 102:176–185. doi:10.1111/1365-2745.12171

    Article  Google Scholar 

  • Esposito A, Fiorentino A, D’Abrosca B, Izzo A, Cefarelli G, Golino A, Monaco P (2008) Potential allelopathic interference of Melilotus neapolitana metabolites on three coexisting species of Mediterranean herbaceous plant community. J Plant Interact 3:199–210. doi:10.1080/17429140801902108

    Article  CAS  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763

    Article  Google Scholar 

  • Fernandez C, Voiriot S, Mévy J-P, Vila B, Ormeño E, Dupouyet S, Bousquet-Mélou A (2008) Regeneration failure of Pinus halepensis Mill.: the role of autotoxicity and some abiotic environmental parameters. For Ecol Manag 255:2928–2936. doi:10.1016/j.foreco.2008.01.072

    Article  Google Scholar 

  • Fernandez C, Monnier Y, Ormeño E, Baldy V, Greff S, Pasqualini V, Mévy J-P, Bousquet-Mélou A (2009) Variations in allelochemical composition of leachates of different organs and maturity stages of pinus halepensis. J Chem Ecol 35:970–979. doi:10.1007/s10886-009-9667-8

    Article  CAS  PubMed  Google Scholar 

  • Fernandez C, Santonja M, Gros R, Monnier Y, Chomel M, Baldy V, Bousquet-Mélou A (2013) Allelochemicals of Pinus Halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. J Chem Ecol 39:298–311. doi:10.1007/s10886-013-0239-6

    Article  CAS  PubMed  Google Scholar 

  • Fernandez C, Monnier Y, Santonja M, Gallet C, Weston LA, Prévosto B, Saunier A, Baldy V, Bousquet-Mélou A (2016) The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front Plant Sci. doi:10.3389/fpls.2016.00594

    Google Scholar 

  • Folin O, Denis W (1915) A colorimetric method for the determination of phenols (and phenol derivates) in urine. J Biol Chem 22:305–308

    CAS  Google Scholar 

  • Gallet C, Pellisier F (2002) Interactions allélopathiques en milieu forestier. Rev For Fr LIV 6:567–575

    Article  Google Scholar 

  • Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, Dagher-Kharrat MB, Derridj A, Slimani S, Badri W, Alifriqui M, Auclair L, Simenel R, Aderghal M, Baudoin E, Galiana A, Prin Y, Sanguin H, Fernandez C, Baldy V (2016) Mediterranean forests, land use and climate change: a social-ecological perspective. Reg Environ Chang. doi:10.1007/s10113-016-0994-3

    Google Scholar 

  • Gavinet J, Prévosto B, Fernandez C (2016) Do shrubs facilitate oak seedling establishment in Mediterranean pine forest understory? For Ecol Manag 381:289–296. doi:10.1016/j.foreco.2016.09.045

    Article  Google Scholar 

  • Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501. doi:10.3389/fpls.2014.00501

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulias J, Traveset A, Riera N, Mus M (2004) Critical Stages in the Recruitment Process of Rhamnus alaternus L. Ann Bot 93:723–731. doi:10.1093/aob/mch100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herranz JM, Ferrandis P, Copete MA, Duro EM, Zalacain A (2006) Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol 184:259–272. doi:10.1007/s11258-005-9071-6

    Article  Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014

    Article  CAS  Google Scholar 

  • Inderjit S (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236. doi:10.1007/s11104-004-0159-x

    Article  CAS  Google Scholar 

  • Inderjit S, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539. doi:10.1007/s00425-003-1054-z

    Article  CAS  PubMed  Google Scholar 

  • Inderjit S, Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. In: Sparks DL (ed) Advances in agronomy, vol 67. Academic Press, Cambridge, pp 141–231

    Google Scholar 

  • Inderjit S, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662. doi:10.1016/j.tree.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Kainulainen P, Holopainen JK (2002) Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol Biochem 34:37–42. doi:10.1016/S0038-0717(01)00147-X

    Article  CAS  Google Scholar 

  • Kandil FE, Grace MH, Seigler DS, Cheeseman JM (2004) Polyphenolics in Rhizophora Mangle L. leaves and their changes during leaf development and senescence. Trees 18:518–528. doi:10.1007/s00468-004-0337-8

    Article  CAS  Google Scholar 

  • Kuiters AT (1990) Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot Neerlandica 39:329–348. doi:10.1111/j.1438-8677.1990.tb01412.x

    Article  CAS  Google Scholar 

  • Linhart YB, Gauthier P, Keefover-Ring K, Thompson JD (2015) Variable phytotoxic effects of Thymus vulgaris (Lamiaceae) terpenes on associated species. Int J Plant Sci 176:20–30. doi:10.1086/678772

    Article  Google Scholar 

  • Lovett JV (1986) Allelopathy: the Australian experience. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 75–99

    Google Scholar 

  • Macias FA (1995) Allelopathy in the search for natural herbicide models. In: Inderjit S, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, pp 310–329

    Google Scholar 

  • Mallik AU (1995) Conversion of temperate forests into heaths: role of ecosystem disturbance and ericaceous plants. Environ Manag 19:675–684. doi:10.1007/BF02471950

    Article  Google Scholar 

  • Mallik AU (2003) Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Crit Rev Plant Sci 22:341–366. doi:10.1080/713610860

    Article  Google Scholar 

  • Mallik AU (2008) Allelopathy in forested ecosystems. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 363–386

    Chapter  Google Scholar 

  • Mazliak P (1982) Croissance et développement: Physiologie végétale II. Hermann, Paris

    Google Scholar 

  • McCarthy N, Bentsen NS, Willoughby I, Balandier P (2011) The state of forest vegetation management in Europe in the 21st century. Eur J For Res 130:7–16. doi:10.1007/s10342-010-0429-5

    Article  Google Scholar 

  • Meiners SJ, Kong CH, Ladwig LM, Pisula NL, Lang KA (2012) Developing an ecological context for allelopathy. Plant Ecol 213:1861–1867. doi:10.1007/s11258-012-0078-5

    Article  Google Scholar 

  • Muller CH (1969) Allelopathy as a factor in ecological process. Vegetatio 18:348–357. doi:10.1007/BF00332847

    Article  Google Scholar 

  • Narwal SS (2000) Weed management in rice: wheat rotation by allelopathy. Crit Rev Plant Sci 19:249–266. doi:10.1016/S0735-2689(00)80004-0

    Article  Google Scholar 

  • Nektarios PA, Economou G, Avgoulas C (2005) Allelopathic effects of Pinus halepensis needles on turfgrasses and biosensor plants. HortScience 40:246–250

    Google Scholar 

  • Paszkowski WL, Kremer RJ (1988) Biological activity and tentative identification of flavonoid components in velvetleaf (Abutilon theophrasti Medik.) seed coats. J Chem Ecol 14:1573–1582. doi:10.1007/BF01012523

    Article  CAS  PubMed  Google Scholar 

  • Prévosto B, Gavinet J, Monnier Y, Corbani A, Fernandez C (2016) Influence of neighbouring woody treatments on Mediterranean oak development in an experimental plantation: better form but weaker growth. For Ecol Manag 362:89–98. doi:10.1016/j.foreco.2015.11.046

    Article  Google Scholar 

  • R_Core_Team (2013) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna. R_Core_Team. http://www.R-project.org/

  • Rey Benayas JM, Navarro J, Espigares T, Nicolau JM, Zavala MA (2005) Effects of artificial shading and weed mowing in reforestation of Mediterranean abandoned cropland with contrasting Quercus species. For Ecol Manag 212:302–314. doi:10.1016/j.foreco.2005.03.032

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, USA

    Google Scholar 

  • Rotherham ID, Read DJ (1988) Aspects of the Ecology of Rhododendron Ponticum with Reference to Its Competitive and Invasive Properties. Asp Appl Biol 16:327–335

    Google Scholar 

  • Santonja M, Fernandez C, Gauquelin T, Baldy V (2015a) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82. doi:10.1007/s11104-015-2471-z

    Article  CAS  Google Scholar 

  • Santonja M, Baldy V, Fernandez C, Balesdent J, Gauquelin T (2015b) Potential shift in plant communities with climate change in a Mediterranean Oak forest: consequence on nutrients and secondary metabolites release during litter decomposition. Ecosystems 18:1253–1268. doi:10.1007/s10021-015-9896-3

    Article  CAS  Google Scholar 

  • Scognamiglio M, D’Abrosca B, Esposito A, Pacifico S, Monaco P, Fiorentino A (2013) Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem Rev 12:803–830. doi:10.1007/s11101-013-9281-9

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva ER, Overbeck GE, Soares GLG (2014) Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: evaluation of seasonal effects. S Afr J Bot 93:14–18. doi:10.1016/j.sajb.2014.03.006

    Article  CAS  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and Identification. Anal Chem 78:779–787. doi:10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  • Souto XC, Gonzales L, Reigosa MJ (1994) Comparative analysis of allelopathic effects produced by four forestry species during decomposition process in their soils in Galicia (NW Spain). J Chem Ecol 20:3005–3015. doi:10.1007/BF02098405

    Article  CAS  PubMed  Google Scholar 

  • Tian FJ, Liu XG, Lu CH, Dong FS, Xu J, Wu YB, Zheng YQ (2016) Allelopathic effects of aerial parts of Descurainia sophia L. on wheat. Allelopath J 39:71–82

    Google Scholar 

  • Trezzi MM, Vidal RA, Balbinot AA Jr, von Hertwig Bittencourt H, da Silva Souza Filho AP (2016) Allelopathy: driving mechanisms governing its activity in agriculture. J Plant Interact 11:53–60. doi:10.1080/17429145.2016.1159342

    Article  CAS  Google Scholar 

  • Van Der Waal C, De Kroon H, De Boer WF, Heitkönig IMA, Skidmore AK, De Knegt HJ, Van Langevelde F, Van Wieren SE, Grant RC, Page BR, Slotow R, Kohi EM, Mwakiwa E, Prins HHT (2009) Water and nutrients alter herbaceous competitive effects on tree seedlings in a semi-arid savanna. J Ecol 97:430–439. doi:10.1111/j.1365-2745.2009.01498.x

    Article  Google Scholar 

  • Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292. doi:10.1111/j.1461-0248.2004.00576.x

    Article  Google Scholar 

  • Vokou D (1992) The allelopathic potential of aromatic shrubs in phryganic (east Mediterranean) ecosystems. In: Rizvi SJH, Rizvi V (eds) Allelopathy. Springer, Netherlands, pp 303–320. doi:10.1007/978-94-011-2376-1_18

    Chapter  Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646. doi:10.1016/S0040-4020(02)00052-2

    Article  CAS  Google Scholar 

  • Walker JF, Miller OK Jr, Semones TLS, Nilsen E, Clinton BD (1999) Suppression of ectomycorrhizae on canopy tree seedlings in Rhododendron maximum L. (Ericaceae) thickets in the southern Appalachians. Mycorrhiza 9:49–56. doi:10.1007/s005720050262

    Article  Google Scholar 

  • Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Porto C (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837. doi:10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle DA, Nilsson MC, Gallet C, Zackrisson O (1998) An Ecosystem-level perspective of allelopathy. Biol Rev 73:305–319. doi:10.1111/j.1469-185X.1998.tb00033.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sylvie Dupouyet (IMBE) for help with bioassays. This study was funded by the French National Research Agency (ANR) through the SecPriMe2 project (ANR-12-BSV7-0016-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bousquet-Mélou.

Additional information

Communicated by Lluís Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashoum, H., Santonja, M., Gauquelin, T. et al. Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species. Eur J Forest Res 136, 699–710 (2017). https://doi.org/10.1007/s10342-017-1066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1066-z

Keywords

Navigation