Skip to main content

Advertisement

Log in

Dendroclimatic signals of pedunculate oak (Quercus robur L.) in Estonia

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study investigates the climate impact on the radial increment of pedunculate oak (Quercus robur L.) in Estonia at the species’ northern distribution limit. Tree-ring width series of 162 living oaks were compiled into three regional chronologies—western (1646–2008), northeastern (1736–2011), and southeastern Estonia (1912–2011). Although these regional growth patterns are similar to each other and even to the growth patterns in adjacent regions, spatial differences in growth responses to climate were established. Thus, oaks growing on shallow soil in western Estonia are positively influenced by summer (June–August) precipitation, and oaks on the deeper soil in northeastern Estonia are favoured by June temperature, while oaks in the southeastern part of the country depend on both July precipitation and temperature. These relationships are pronounced especially in pointer years. However, due to the impact of regional weather fluctuations on tree growth, there is a lack of correspondence between the local and the pan-European pointer years. In addition, our research presents the first tree-ring-based palaeoclimatic reconstruction for the country. Although the created model has relatively low predictive skill describing less than a quarter of the variance in actual summer precipitation in western Estonia, it has passable capacity of detecting past rainfall extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahas R, Jaagus J, Aasa A (2000) The phenological calendar of Estonia and its correlation with mean air temperature. Int J Biometeorol 44:159–166

    Article  PubMed  CAS  Google Scholar 

  • Askeyev OV, Tischin D, Sparks TH, Askeyev IV (2005) The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol 49:262–266

    Article  PubMed  CAS  Google Scholar 

  • Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Missouri Bot Gard 70:629–657

    Article  Google Scholar 

  • Baillie MGL, Pilcher JR (1973) A simple crossdating program for tree-ring research. Tree-Ring Bull 33:7–14

    Google Scholar 

  • Beck W, Sanders TGM, Pofahl U (2013) CLIMTREG: detecting temporal changes in climate–growth reactions–a computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia 31:232–241

    Article  Google Scholar 

  • Bednarz Z, Ptak J (1990) The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepołomice forest near Cracow, Southern Poland. Tree-Ring Bull 50:1–10

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Bridge MC, Gasson PE, Cutler DF (1996) Dendroclimatological observations on trees at Kew and Wakehurst Place: event and pointer years. Forestry 69:263–269

    Article  Google Scholar 

  • Briffa KR, Cook ER (1990) Methods of response function analyses. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer Academic Publishers, Dordrecht, pp 240–247

    Google Scholar 

  • Briffa KR, Jones PD, Pilcher JR, Hughes MK (1988) Reconstructing summer temperatures in Northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic Alpine Res 20:385–394

    Article  Google Scholar 

  • Bronisz A, Bijak S, Bronisz K, Zasada M (2012) Climate influence on radial increment of oak (Quercus sp.) in central Poland. Geochronometria 39:276–284

    Article  Google Scholar 

  • Brown DM, Munro MAR, Baillie MGL, Pilcher JR (1986) Dendrochronology—the absolute Irish standard. Radiocarbon 28:279–283

    CAS  Google Scholar 

  • Cedro A (2007) Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: comparison of the climatic determinants of tree-ring width. Geochronometria 26:39–45

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. PhD Dissertation, University of Arizona

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Shiyatov S, Mazepa V (1990) Estimation of the mean chronology. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer Academic Publishers, Dordrecht, pp 123–132

    Chapter  Google Scholar 

  • Cooper R, Melvin TM, Tyers I, Wilson RJS, Briffa KR (2013) A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium. Clim Dynam 40:1019–1039

    Article  Google Scholar 

  • Čufar K (2007) Dendrochronology and past human activity—a review of advances since 2000. Tree-Ring Res 63:47–60

    Article  Google Scholar 

  • Čufar K, De Luis M, Eckstein D, Kajfež-Bogataj L (2008a) Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int J Biometeorol 52:607–615

    Article  PubMed  Google Scholar 

  • Čufar K, De Luis M, Zupančič M, Eckstein D (2008b) A 548-year tree-ring chronology of oak (Quercus spp.) for southeast Slovenia and its significance as dating tool and climate archive. Tree-Ring Res 64:3–15

    Article  Google Scholar 

  • Dahl E (1998) The phytogeography of Northern Europe: British Isles, Fennoscandia and adjacent areas. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Daniel O (1929) Mets ja metsandus Eestis. Riigimetsade Valitsus, Tallinn

    Google Scholar 

  • Doležal J, Mazůrek P, Klimešová J (2010) Oak decline in southern Moravia: the association between climate change and early and late wood formation in oaks. Preslia 82:289–306

    Google Scholar 

  • Drobyshev I, Niklasson M, Eggertsson O, Linderson H, Sonesson K (2008) Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann For Sci 65:512

    Article  Google Scholar 

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecol Manage 259:2160–2171

    Article  Google Scholar 

  • Drobyshev I, Niklasson M, Linderson HW, Seftigen K, Hickler T, Eggertsson O (2011) Reconstruction of a regional drought index in southern Sweden since AD 1750. Holocene 21:667–679

    Article  Google Scholar 

  • Eckstein D (1983) Overview of existing tree-ring chronologies in Europe. In: Eckstein D, Wrobel S, Aniol RW (eds) Dendrochronology and Archaeology in Europe. Proceedings of a Workshop of the European Science Foundation (ESF), held in Hamburg, April 28-39, 1982. Mitt Bundesforsch vol 141, pp 125–136

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss Centralbl 88:230–250

    Article  Google Scholar 

  • Eckstein D, Schmidt B (1974) Dendroklimatologische Untersuchungen an Stieleichen aus dem maritimen Klimagebiet Schleswig-Holsteins. Angew Bot 48:371–383

    Google Scholar 

  • Eesti Entsüklopeediakirjastus (ed) (2005) Suur maailma atlas: Eesti Entsüklopeedia kaardiköide. Eesti Entsüklopeediakirjastus, Tallinn

    Google Scholar 

  • Friedrich M, Remmele S, Kromer B, Hofmann J, Spurk M, Kaiser KF, Orcel C, Küppers M (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1111–1122

    CAS  Google Scholar 

  • Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Guiot J, Gordon G (1990) Verification. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer Academic Publishers, Dordrecht, pp 178–185

    Google Scholar 

  • García González I (2001) Weiser: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 19:239–244

    Google Scholar 

  • Haneca K, Čufar K, Beeckman H (2009) Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J Archaeol Sci 36:1–11

    Article  Google Scholar 

  • Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2009) Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319:163–174

    Article  CAS  Google Scholar 

  • Hilasvuori E, Berninger F (2010) Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiol 30:636–647

    Article  PubMed  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Hordo M, Metslaid S, Kiviste A (2009) Response of Scots pine (Pinus sylvestris L.) radial growth to climate factors in Estonia. Baltic For 15:195–205

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  PubMed  CAS  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Jaagus J (1999) Uusi andmeid Eesti kliimast. Publ Inst Geogr Univ Tartuensis 85:28–38

    Google Scholar 

  • Jaagus J (2006a) Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor Appl Climatol 83:77–88

    Article  Google Scholar 

  • Jaagus J (2006b) Trends in sea ice conditions on the Baltic Sea near the Estonian coast during the period 1949/50–2003/04 and their relationships to large-scale atmospheric circulation. Boreal Environ Res 11:169–183

    Google Scholar 

  • Jaagus J, Ahas R (2000) Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Clim Res 15:207–219

    Article  Google Scholar 

  • Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology. Paul Haupt, Berne

    Google Scholar 

  • Kelly PM, Leuschner HH, Briffa KR, Harris IC (2002) The climatic interpretation of pan-European signature years in oak ring-width series. Holocene 12:689–694

    Article  Google Scholar 

  • Kern Z, Grynaeus A, Morgós A (2009) Reconstructed precipitation for southern Bakony Mountains (Transdanubia, Hungary) back to 1746 AD based on ring widths of oak trees. Időjárás 113:299–314

    Google Scholar 

  • Kolář T, Kyncl T, Rybníček M (2012) Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30:243–248

    Article  Google Scholar 

  • Läänelaid A (2001) Network of tree-ring series in Estonia connected with north European chronologies. Palaeobotanist 50:101–105

    Google Scholar 

  • Läänelaid A, Eckstein D (2003) Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Baltic For 9:76–82

    Google Scholar 

  • Läänelaid A, Eckstein D (2012) Norway spruce in Estonia reflects the early summer weather in its tree-ring widths. Baltic For 18:194–204

    Google Scholar 

  • Läänelaid A, Sohar K, Meikar T (2008) Present state and chronology of oaks in an oak forest in Saaremaa Island, Estonia. Baltic For 14:34–43

    Google Scholar 

  • Läänelaid A, Helama S, Kull A, Timonen M, Jaagus J (2012) Common growth signal and spatial synchrony of the chronologies of tree-rings from pines in the Baltic Sea region over the last nine centuries. Dendrochronologia 30:147–155

    Article  Google Scholar 

  • Laas E, Uri V, Valgepea M (2011) Metsamajanduse alused. Tartu Ülikooli Kirjastus, Tartu

    Google Scholar 

  • Laasimer L (1965) Eesti NSV taimkate. Valgus, Tallinn

    Google Scholar 

  • Lebourgeois F, Cousseau G, Ducos Y (2004) Climate–tree–growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann For Sci 61:361–372

    Article  Google Scholar 

  • Matisons R, Brūmelis G (2012) Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees-Struct Funct 26:1251–1266

    Article  Google Scholar 

  • Matisons R, Elferts D, Brūmelis G (2013) Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur—relation with climate factors near its northern distribution limit. Dendrochronologia 31:129–139

    Article  Google Scholar 

  • Metsakaitse- ja Metsauuenduskeskus (ed) (2009) Aastaraamat Mets 2008. Yearbook Forest 2008. Keskkonnaministeerium, Metsakaitse- ja Metsauuenduskeskus, Tartu

  • Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora. Text u. Karten. Bd. 3. Gustav Fischer Verlag, Stuttgart, New York

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Nola P (1996) Climatic signal in earlywood and latewood of deciduous oaks from northern Italy. In: Dean JS, Meko DM, Swetnam TW (eds) Tree Rings, Environment and Humanity: Proceedings of the International Conference, Radiocarbon. Department of Geosciences, University of Arizona, Tucson, pp 249–258

  • Pärn H (2003) Radial growth response of Scots pine to climate under dust pollution in Northeast Estonia. Water Air Soil Poll 144:343–361

    Article  Google Scholar 

  • Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297–304

    Article  Google Scholar 

  • Pilcher JR, Baillie MGL, Schmidt B, Becker B (1984) A 7,272-year tree-ring chronology for western Europe. Nature 312:150–152

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. Version 0.53 for Microsoft Windows. User Reference. Rinntech Heidelberg, Heidelberg

  • Roig FA, Barriopedro D, García Herrera R, Patón Dominguez D, Monge S (2009) North Atlantic Oscillation signatures in western Iberian tree-rings. Geogr Ann 91:141–157

    Article  Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251

    Article  Google Scholar 

  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann For Sci 62:209–218

    Article  Google Scholar 

  • Rozas V, García González I (2012) Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56:787–800

    Article  PubMed  Google Scholar 

  • Ruseckas J (2006) Impact of climatic fluctuations on radial increment of English oak (Quercus robur L.). Ecologija 1:16–24

    Google Scholar 

  • Saarse L, Veski S (2001) Spread of broad-leaved trees in Estonia. Proc Est Acad Sci Geol 50:51–65

    Google Scholar 

  • Saarse L, Poska A, Veski S (1999) Spread of Alnus and Picea in Estonia. Proc Est Acad Sci Geol 48:170–186

    Google Scholar 

  • Santini A, Bottacci A, Gellini R (1994) Preliminary dendroecological survey on pedunculate oak (Quercus robur L) stands in Tuscany (Italy). Ann For Sci 51:1–10

    Article  Google Scholar 

  • Sass-Klaassen U, Sabajo CR, den Ouden J (2011) Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29:171–175

    Article  Google Scholar 

  • Schweingruber FH (1993) Trees and wood in dendrochronology. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Sohar K, Vitas A, Läänelaid A (2012) Sapwood estimates of pedunculate oak (Quercus robur L.) in eastern Baltic. Dendrochronologia 30:49–56

    Article  Google Scholar 

  • Sohar K, Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2014) Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria 41:92–103

    Google Scholar 

  • Stewart MN (1913) Relation of precipitation to tree growth. Mon Weather Rev 41:1287–1297

    Article  Google Scholar 

  • Tessier L, Nola P, Serre-Bachet F (1994) Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–367

    Article  Google Scholar 

  • Uuemaa E, Roosaare J, Kanal A, Mander Ü (2008) Spatial correlograms of soil cover as an indicator of landscape heterogeneity. Ecol Indic 8:783–794

    Article  Google Scholar 

  • Vahtre S (1970) Ilmastikuoludest Eestis XVIII ja XIX sajandil (kuni 1870. a.) ja nende mõjust põllumajandusele ning talurahva olukorrale. TRÜ Toimetised 258:43–159

    Google Scholar 

  • Wazny T, Eckstein D (1991) The dendrochronological signal of oak (Quercus spp.) in Poland. Dendrochronologia 9:181–191

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson R, Miles D, Loader NJ, Melvin T, Cunningham L, Cooper R, Briffa K (2013) A millennial long March–July precipitation reconstruction for southern-central England. Clim Dynam 40:997–1017

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa, which is carried out by Foundation Archimedes, and by the Ministry of Education and Research of the Republic of Estonia (SF0180049s09 and IUT2-16), and by the Academy of Finland (#251441). The research was prepared within the project EstKliima funded by Environmental protection and -technology programme No 3.2.0802.11-0043 of European Regional Fund. The authors sincerely thank Jaan Pärn and Epp Kikas for their assistance in the fieldworks and the anonymous reviewers for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Sohar.

Additional information

Communicated by C. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohar, K., Läänelaid, A., Eckstein, D. et al. Dendroclimatic signals of pedunculate oak (Quercus robur L.) in Estonia. Eur J Forest Res 133, 535–549 (2014). https://doi.org/10.1007/s10342-014-0783-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-014-0783-9

Keywords

Navigation