Skip to main content

Advertisement

Log in

A density management diagram for Norway spruce in the temperate European montane region

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Norway spruce is one of the most important conifer tree species in Europe, paramount for timber provision, habitat, recreation, and protection of mountain roads and settlements from natural hazards. Although natural Norway spruce forests exhibit diverse structures, even-aged stands can arise after disturbance or as the result of common silvicultural practice, including off-site afforestation. Many even-aged Norway spruce forests face issues such as senescence, insufficient regeneration, mechanical stability, sensitivity to biotic disturbances, and restoration. We propose the use of Density Management Diagrams (DMD), stand-scale graphical models designed to project growth and yield of even-aged forests, as a heuristic tool for assessing the structure and development of even-aged Norway spruce stands. DMDs are predicated on basic tree allometry and the assumption that self-thinning occurs predictably in forest stands. We designed a DMD for Norway spruce in temperate Europe based on wide-ranging forest inventory data. Quantitative relationships between tree- and stand-level variables that describe resistance to selected natural disturbances were superimposed on the DMD. These susceptibility zones were used to demonstrate assessment and possible management actions related to, for example, windfirmness and effectiveness of the protective function against rockfall or avalanches. The Norway spruce DMD provides forest managers and silviculturists a simple, easy-to-use, tool for evaluating stand dynamics and scheduling needed density management actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amman M (2006) Schutzwirkung abgestorbener Bäume gegen Naturgefahren. PhD dissertation. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL, Birmensdorf

  • Angelstam P, Kuuluvainen T (2004) Boreal forest disturbance regimes, successional dynamics and landscape structures—a European perspective. Ecol Bull 51:117–136

    Google Scholar 

  • Aulitzky H (1984) The microclimatic conditions in a subalpine forest as basis for the management. GeoJournal 8:277–281

    Article  Google Scholar 

  • Baier P (1996) Defence reactions of Norway spruce (Picea abies Karst.) to controlled attacks of Ips typographus (L.) (Col., Scolytidae) in relation to tree parameters. J Appl Entomol 120:587–593

    Article  Google Scholar 

  • Bebi P, Kienast F, Schönenberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective functions. For Ecol Manag 145:3–14

    Article  Google Scholar 

  • Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems–State of research and implications for management. For Ecol Manag 257:1883–1892

    Article  Google Scholar 

  • Berretti R, Motta R (2005) Ungulati selvatici e foresta. Parco Naturale di Paneveggio–Pale di S Martino, Trento

  • Berretti R, Caffo L, Camerano P, De Ferrari F, Domaine A, Dotta A, Gottero F, Haudemand JC, Letey C, Meloni F, Motta R, Terzuolo PG (2006) Selvicoltura nelle foreste di protezione: Esperienze e indirizzi gestionali in Piemonte e Valle d’Aosta. Compagnia delle Foreste, Arezzo

  • Bi H, Turvey ND (1997) A method of selecting data points for fitting the maximum biomass–density line for stand undergoing self–thinning. Aust J Ecol 22:356–359

    Article  Google Scholar 

  • Buford MA, Burkhardt HE (1987) Genetic improvement effects on growth and yield of loblolly pine plantations. For Sci 33:704–724

    Google Scholar 

  • Cantiani MG, Floris A, Tabacchi G (2000) Yield features of high mountain and subalpine Spruce forests in Val di Fiemme (Trentino, Italy). Comunicazione di Ricerca dell’Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura 3:3-21

  • Castagneri D, Vacchiano G, Lingua E, Motta R (2008) Analysis of intraspecific competition in two subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). For Ecol Manag 255:651–659

    Article  Google Scholar 

  • Castagneri D, Garbarino M, Berretti R, Motta R (2010) Site and stand effects on coarse woody debris in montane mixed forests of Eastern Italian Alps. For Ecol Manag 260:1592–1598

    Article  Google Scholar 

  • Castedo-Dorado F, Crecente-Campo F, Alvarez-Alvarez P, Barrio-Anta M (2009) Development of a stand density management diagram for radiata pine stands including assessment of stand stability. Forestry 82:1–16

    Article  Google Scholar 

  • Cenuşă R (1992) Cercetări asupra structurii volumului ecologic şi succesiunii ecosistemelor forestiere de limită altitudinală din Carpaţii Nordici (Călimani şi Giumalău). PhD Dissertation, Academia de Ştiinţe Agricole şi Silvice, Bucarest

  • Charru M, Seynave I, Morneau F, Bontemps JD (2011) Significant differences and curvilinearity of the self–thinning relationship of eleven species based on forest inventory data. Ann For Sci 69:195–205

    Article  Google Scholar 

  • Čížková P, Svoboda M, Křenová Z (2011) Natural regeneration of acidophilous spruce mountain forests in non–intervention management areas of Šumava National Park—the first results of the Biomonitoring project. Silva Gabreta 17:19–35

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: a simulation study. For Ecol Manag 256:347–354

    Article  Google Scholar 

  • Curtis R (2010) Effect of diameter limits and stand structure on relative density indices: a case study. West J Appl For 25:169–175

    Google Scholar 

  • Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77:187–205

    Google Scholar 

  • Drew TJ, Flewelling JW (1979) Stand density management: an alternative approach and its application to Douglas-fir plantations. For Sci 25:518–532

    Google Scholar 

  • Ducey MJ (2009) The ratio of additive and traditional stand density indices. West J Appl For 24:5–10

    Google Scholar 

  • Dutilleul P, Nef L, Frigon D (2000) Assessment of site characteristics as predictors of the vulnerability of Norway spruce (Picea abies Karst.) stands to attack by Ips typographus L. (Col., Scolytidae). J Appl Entomol 124:1–5

    Article  Google Scholar 

  • Fisher A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in Central European forest ecosystems (near natural as well as managed) after storm events. Folia Geobot 37:17–21

    Article  Google Scholar 

  • Gamborg C, Larsen JB (2003) Back to nature—a sustainable future for forestry? For Ecol Manag 179:559–571

    Article  Google Scholar 

  • Gauquelin X, Courbaud B (eds) (2006) Guide de sylviculture des forêts de montagne—Alpes du Nord françaises. Cemagref et Office National des Forêts, Grenoble

    Google Scholar 

  • Hansen J, Spiecker H (2004) Conversion of Norway spruce (Picea abies [L.] Karst.) forests in Europe. In: Stanturf JA, Madsen P (eds) Restoring temperate and boreal forested restoration of boreal and temperate forests. CRC Press, Boca Raton, pp 339–347

    Chapter  Google Scholar 

  • Huber C (2005) Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National Park. J Environ Qual 34:1772–1779

    Article  PubMed  CAS  Google Scholar 

  • Hynynen J (1993) Self-thinning models for even-aged stands of Pinus sylvestris, Picea abies and Betula pendula. Scand J For Res 8:326–336

  • INFC (2005) Linee generali del progetto per il secondo inventario forestale nazionale italiano. CRA–ISAFA, MiPAF—Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato, Trento

  • INFC (2006) Procedure di posizionamento e di rilievo degli attributi di terza fase. CRA–ISAFA, MiPAF—Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato, Trento

  • IPLA (2003) Manuale dei rilievi inventariali di campagna. Regione Piemonte, Torino

  • Jack SB, Long JN (1996) Linkages between silviculture and ecology: an analysis of density management diagrams. For Ecol Manag 86:205–220

    Article  Google Scholar 

  • Jakuš R, Edwards-Jonášová M, Cudlín P, Blaženec M, Ježík M, Havlíček F, Moravecet I (2011) Characteristics of Norway spruce trees (Picea abies Karst.) surviving a Spruce bark beetle (Ips typographus L.) outbreak. Trees 25:965–973

    Article  Google Scholar 

  • Klopcic M, Poljanec A, Gartner A, Boncina A (2009) Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests. Ecoscience 16:48–57

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Krumm F, Kulakowski D, Spiecker H, Duc P, Bebi P (2011) Stand development of Norway spruce dominated subalpine forests of the Swiss Alps. For Ecol Manag 262:620–628

    Article  Google Scholar 

  • Krumm F, Kulakowski D, Risch AC, Spiecker H, Bebi P (2012) Stem exclusion and mortality in unmanaged subalpine forests of the Swiss Alps. Eur J For Res 131:1571–1583

    Article  Google Scholar 

  • Kulakowski D, Bebi P (2004) Range of variability of unmanaged subalpine forests. Forum für Wissen 2004:47–54

    Google Scholar 

  • Long JN (1985) A practical approach to density management. For Chron 61:23–27

    Google Scholar 

  • DeRose RJ, Shaw JD, Vacchiano G, Long, JN (2008) Improving longleaf pine mortality predictions in the Southern Variant of the Forest Vegetation Simulator. In: Havis RN, Crookston NL (eds) 2008 Third Forest Vegetation Simulator Conference; Fort Collins, February 13–15, 2007; Proceedings RMRS–P–54 Fort Collins, CO: USDA Forest Service, Rocky Mountain Research Station: pp 160–166

  • Long JN, Daniel TW (1990) Assessment of growing stock in uneven aged stands. West J Appl For 5:93–96

    Google Scholar 

  • Long JN, Shaw JD (2005) A density management diagram for even–aged ponderosa pine stands. West J Appl For 20:205–215

    Google Scholar 

  • Mayer H, Ott E (1991) Gebirgswaldbau—Schutzwaldpflege. Gustav Fischer, Stuttgart

    Google Scholar 

  • Meyer-Grass M, Schneebeli M (1992) Die Abhängigkeit der Waldlawinen von Standorts-, Bestandes- und Schneeverhältnissen. Internationales Symposion Interpraevent 1992-Bern, Tagungspublikation, Band 2: 443-455

  • Mitchell S (2000) Forest health: preliminary interpretations for wind damage. BC Ministry of Forests, Forest Practices Branch, Victoria

    Google Scholar 

  • Monserud RA, Ledermann T, Sterba H (2005) Are self–thinning constraints needed in a tree–specific mortality model? For Sci 50:848–858

    Google Scholar 

  • Moser M (1991) Taxationshilfen für Südtirol. Dissertation, Universität für Bodenkultur, Wien

    Google Scholar 

  • Motta R (2002) Old-growth forests and silviculture in the Italian Alps: the case-study of the strict reserve of Paneveggio (TN). Plant Biosystems 136:223–232

    Article  Google Scholar 

  • Motta R, Haudemand JC (2000) Protective forests and silvicultural stability—an example of planning in the Aosta Valley. Mount Res Devel 20:180–187

    Article  Google Scholar 

  • Motta R, Lingua E (2005) Human impact on size, age, and spatial structure in a mixed European larch and Swiss stone pine forest in the Western Italian Alps. Can J For Res 35:1809–1820

    Article  Google Scholar 

  • Motta R, Berretti R, Lingua E, Piussi P (2006) Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. For Ecol Manag 235:155–163

    Article  Google Scholar 

  • Nascimbene J, Marini L, Motta R, Nimis PL (2009) Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodiv Conserv 18:1519–1522

    Google Scholar 

  • Panayotov M, Kulakowski D, Laranjeiro DS, Bebi P (2011) Wind disturbances shape old Norway spruce–dominated forest in Bulgaria. For Ecol Manag 262:470–481

    Article  Google Scholar 

  • Parviainen J, Kassioumis K, Bücking W, Hochbichler E, Päivinen R, Little D (2000) Final report summary: mission, goal, outputs, linkages, recommendations and partners. In: Commission European (ed) EUR 19550 – COST action E4—forest reserves research network. Office for Official Publication of the European Communities, Luxembourg, pp 9–38

    Google Scholar 

  • Pretzsch H (2005) Stand density and growth of Norway spruce (Picea abies (L) Karst) and European beech (Fagus sylvatica L): evidence from long–term experimental plots. Eur J For Res 124:193–205

    Article  Google Scholar 

  • Pretzsch H (2006) Species–specific allometric scaling under self–thinning. Evidence from long–tern plots in forest stands. Oecologia 146:572–583

    Article  PubMed  Google Scholar 

  • Pretzsch H, Biber P (2005) A re–evaluation of Reineke’s rule and stand density index. For Sci 51:304–320

    Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101(8):1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Reineke LH (1933) Perfecting a stand–density index for even–aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Riou–Nivert P (2001) Facteurs de stabilité des peuplements et gestion de l’équilibre. Forêt Entreprise 139:17–25

    Google Scholar 

  • R Development Core Team (2011) R 2.14.1. R Foundation for Statistical Computing, Vienna

  • Rottmann M (1986) Wind– und Sturmschäden im Wald. Beiträge zur Beurteilung der Bruchgefährdung, zur Schadensvorbeugung und zur Behandlung sturmgeschädigter Nadelholzbestände. Sauerländer, Frankfurt am Main

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol 9:1620–1633

    Article  Google Scholar 

  • Schlyter P, Stjernquist I, Bärring L, Jönsson AM, Nilsson C (2006) Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim Res 31:75–84

    Article  Google Scholar 

  • Schmidt M, Kandler G (2009) An analysis of Norway spruce stem quality in Baden-Wurttemberg: results from the second German national forest inventory. Eur J For Res 128:515–529

    Article  Google Scholar 

  • Schmidt–Vogt, H (1977) Die Fichte. Band I Taxomomie –Verbreitung—Morphologie—Ökologie—Waldgesellschaften. Paul Parey, Hamburg and Berlin

  • Schmidt–Vogt H, Wütherich G, Deichner P (1987) Untersuchungen zur Sturmstabilität von Fichten und Tannen in Finchten–Tannen–Mischbeständen auf verschiedenen Standorten Süddeutschlands. Allgemeine Forst- und Jagdzeitung 158:42–50

    Google Scholar 

  • Schönenberger W (2001) Cluster afforestation for creating diverse mountain forest structures–a review. For Ecol Manag 145:121–128

    Article  Google Scholar 

  • Schütz JP, Zingg A (2010) Improving estimations of maximal stand density by combining Reineke’s size–density rule and the yield level, using the example of spruce (Picea abies (L) Karst) and European Beech (Fagus sylvatica L). Ann For Sci 67:507

    Article  Google Scholar 

  • Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol 17:2842–2852

    Article  Google Scholar 

  • Shaw JD (2000) Application of stand density index to irregularly structured stands. West J Appl For 15:40–42

    CAS  Google Scholar 

  • Shaw JD, Long JN (2007) A density management diagram for longleaf pine stands with application to red–cockaded woodpecker habitat. South J Appl For 31:28–38

    Google Scholar 

  • Shorohova E, Fedorchuk V, Kuznetsova M, Shvedova O (2008) Wind–induced successional changes in pristine boreal Picea abies forest stands: evidence from long–term permanent plot records. Forestry 81:335–359

    Article  Google Scholar 

  • Shorohova E, Kuuluvainen T, Kangur A, Jõgiste K (2009) Natural stand structure, disturbance regimes, and successional dynamics in the Eurasian boreal forest: a review with special reference to Russian studies. Ann For Sci 66:201

    Article  Google Scholar 

  • Skrøppa T (2003) Euforgen technical guidelines for genetic conservation and use for Norway spruce (Picea abies). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Smith FW, Long JN (1987) Elk hiding and thermal cover guidelines in the context of lodgepole pine stand density. West J Appl For 2:6–10

    Google Scholar 

  • Sterba H (1976) Die Funktionsschemata der vier Fichtenertragstafeln. Centralblatt für das gesamte Forstwesen 93:102-112

  • Sterba H (1981) Natürlicher Bestockungsgrad und Reinekes SDI. Centralblatt für das gesamte Forstwesen 98:101–116

  • Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33:1022–1034

    Google Scholar 

  • Svoboda M, Fraver S, Janda P, Bace R, Zenahlikova J (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manag 260:707–714

    Article  Google Scholar 

  • Svoboda M, Janda P, Nagel TA, Fraver S, Rejzek J, Bace R (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J Veg Sci 23:86–97

    Article  Google Scholar 

  • Thomasius H (1980) Wissenschaftliche Grundlagen der Rahmenrichtlinie zur Behandlung bruchgeschadigter Fichten– und Kiefernbestande. Sozialistische Forstwirtschaft 30:364–373

  • Thomasius H (1988) Stabilität natürlicher und künstlicher Waldökosysteme sowie deren Beeinflussbarkeit durch forstwirtschaftliche Massnahmen (Teil I and II). Allg For Z 43(1037–1043):1064–1068

    Google Scholar 

  • Vacchiano G, Motta R, Long JN, Shaw JD (2008) A density management diagram for Scots pine (Pinus sylvestris L): a tool for assessing the forest’s protective effect. For Ecol Manag 255:2542–2554

    Article  Google Scholar 

  • Vidal C, Bélouard T, Hervé JC, Robert N, Wolsack J (2007) A new flexible forest inventory in France. In: McRoberts RE, Reams GA, Van Deusen PC, McWilliams WH (eds), Proceedings of the 7th Annual Forest Inventory and Analysis Symposium, Portland 3-6 Oct 2005, General Technical Report WO-77, USDA Forest Service, pp 67–73

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manag 202:67–82

    Article  Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self–thinning in overcrowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ 14:107–129

    Google Scholar 

  • Zajaczkowski J (1991) Odporność lasu na szkodliwe działanie wiatru i śniegu. Wydawnictwo Świat, Warsaw

    Google Scholar 

  • Zeide B (1985) Tolerance and self–tolerance of trees. For Ecol Manag 13:149–166

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge data contributors, and in particular Roberta Berretti and Daniele Castagneri (Università di Torino, Italy), Momchil Panayotov (University of Forestry, Sofia, Bulgaria), Thomas Vrska (Agency for Nature Conservation and Landscape Protection of the Czech Republic), Fabio Maistrelli (Bolzano Autonomous Province, Italy), Hubert Hasenauer (University of Natural Resources and Applied Life Sciences, Vienna, Austria), IPLA SpA (regional forest inventory produced by Regione Piemonte with the support of EU structural funds), and Regione Autonoma Valle d’Aosta. Raw data were also provided by the Italian National Forest Inventory of Forests and Forest Carbon Pools (INFC 2005), carried out by the National Forest Service of Italy (CFS) and the Research Council for Agriculture—Forest Monitoring and Management Research Unit (CRA-MPF). Support to M. Svoboda to this research came from the Czech Science Foundation (GACR P504/10/1644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Vacchiano.

Additional information

Communicated by A. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacchiano, G., Derose, R.J., Shaw, J.D. et al. A density management diagram for Norway spruce in the temperate European montane region. Eur J Forest Res 132, 535–549 (2013). https://doi.org/10.1007/s10342-013-0694-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0694-1

Keywords

Navigation