Skip to main content
Log in

Spring tree phenology in the Alps: effects of air temperature, altitude and local topography

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

A participatory network was set up to study tree phenology in the Western Alps. We used data collected in 2006 and 2007 on birch, ash, hazel, spruce and larch to assess how local air temperature, altitude and other topographic variables influenced dates of budburst and leaf unfolding. Altitude was, as expected, a main predictor variable of budburst and leafing dates with delays ranging from 2.4 to 3.4 days per 100 m. Ash was the only species with strong evidence of a year difference in the altitudinal gradient with the warm year (2007) characterized by a weaker altitudinal gradient. We found a latitudinal gradient in the appearance of budburst for one coniferous species (larch) and curvature affected leafing in ash. Thermal sum (sum of Degree-Days above 0 °C) was increasing with altitude for budburst (birch, ash and larch) and leafing (birch and ash). Understanding of altitude and topography effects in addition to temperature in phenological models should improve projections of future changes in mountain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ArcGIS (2004) ESRI GIS and mapping software. Version 8.3.0

  • Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Ann Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85

    Article  Google Scholar 

  • Cannel MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191

    Article  Google Scholar 

  • Castro-Diez P, Montserrat-Marti G, Cornelissen JHC (2003) Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species. Plant Ecol 166:117–129

    Article  Google Scholar 

  • Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob Change Biol 11:1–13

    Article  CAS  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264

    Article  Google Scholar 

  • Chmielewski FM, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Defila C (1991) Pflanzenphänologie der Schweiz. Dissertation, University of Zürich. Veröff Schweiz Meteorol Anst 50: 1–235

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  PubMed  CAS  Google Scholar 

  • Defila C, Clot B (2005) Phytophenological trends in the Swiss Alps, 1951–2002. Meteorol Z 14:191–196

    Article  Google Scholar 

  • Diekmann M, Eilertsen O, Fremstad E, Lawesson JE, Aude E (1999) Beech forest communities in the Nordic countries—a multivariate analysis. Plant Ecol 140:203–220

    Article  Google Scholar 

  • Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstwiss Centralbl 118:251–270

    Article  Google Scholar 

  • Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 125:181–188

    Article  Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationships between first flowering date and temperature in the flora of a locality in central England. Funct Ecol 9:55–60

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gibon A, Sheeren D, Monteil C, Ladet S, Balent G (2010) Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework. Landsc Ecol 25:267–285

    Article  Google Scholar 

  • Gormsen AK, Hense A, Toldam-Andersen TB, Braun P (2005) Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark. Theor Appl Climatol 82:41–50

    Article  Google Scholar 

  • Hannerz M (1999) Evaluation of temperature models for predicting bud burst in Norway spruce. Can J For Res 29:1–11

    Google Scholar 

  • Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed Species to snow removal dates in the Central Alps: implications for climate warming. Arctic Antarct Alp Res 38:99–103

    Article  Google Scholar 

  • Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252

    Article  Google Scholar 

  • Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604

    Article  Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    Article  PubMed  Google Scholar 

  • Inouye DW, Saavedra F, Lee-Yang W (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). Am J Bot 90:905–910

    Article  PubMed  Google Scholar 

  • Jackson MT (1966) Effects of microclimate on spring flowering phenology. Ecology 47:407–415

    Article  Google Scholar 

  • Keller F, Goyette S, Beniston M (2005) Sensitivity analysis of snowcover to climate change scenarios and their impact on plant habitats in alpine terrain. Clim Change 72:299–319

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  PubMed  Google Scholar 

  • Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to climate warming. Plant Cell Environ 18:93–104

    Article  Google Scholar 

  • Menzel A (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen. Forstl. Forschungsberic (München) 164

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263

    Article  Google Scholar 

  • Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23:793–812

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Eckhardt S (2005) ‘SSW to NNE’—North Atlantic oscillation affects the progress of seasons across Europe. Glob Change Biol 11:909–918

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Menzel A, Estrella N, Schleip C (2008) Impacts of climate variability, trends and NAO on 20th century European plant phenology. In: Brönnimann S, Luterbacher J, Ewen T, Diaz HF, Stolarski R, Neu U (eds) Climate variability and extremes during the past 100 years, vol advances in global change research, vol 33. Springer, Berlin, pp 221–233

    Chapter  Google Scholar 

  • Migliavacca M, Cremonese E, Colombo R et al (2008) European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling? Int J Biometeorol 52:587–605

    Article  PubMed  CAS  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Moser L, Fonti P, Büntgen U et al (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233

    Article  PubMed  Google Scholar 

  • Myking T (1997) Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees 12:107–112

    Google Scholar 

  • Nordli O, Wielgolaski FE, Bakken AK et al (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52:625–639

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669

    Article  Google Scholar 

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Change Biol 12:1174–1188

    Article  Google Scholar 

  • Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118

    Article  PubMed  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. Int J Climatol 22:1739–1755

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  PubMed  CAS  Google Scholar 

  • Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:395–414

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Theurillat JP, Schlüssel A (2000) Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisan Alps (Switzerland). Phytocoenologia 30:439–456

    Google Scholar 

  • Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175

    Article  Google Scholar 

  • Vitasse Y, Delzona S, Dufrêne E et al (2009a) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744

    Article  Google Scholar 

  • Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009b) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198

    Article  PubMed  Google Scholar 

  • Wielgolaski FE (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168

    Article  Google Scholar 

  • Wipf S (2010) Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol 207:53–66

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Taylor & Francis, CRC Press, London

    Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anne Loison for useful comments on the analyses and Jennifer Stien for reading the last draft. We are grateful to all the volunteers for help to collecting data on the study sites. This work is part of the project “Phénoclim” supported by the Rhône-Alpes and PACA Regions, the Europe (FEDER), the Foundations “Nicolas Hulot pour la Nature et l’Homme”, “Somfy”, “Véolia Environment”, “Petzl” and “Nature et Découvertes”, the EOG Association for Conservation, the Forsitec company, the British Ecological Society, the Patagonia company, and the “Crédit Agricole des Savoies” bank. We also thank the CNRS research group 2968 “Système d’Information Phénologique pour la Gestion et l’Etude des Changements Climatiques”, the National Parks of “Les Ecrins” and “Vanoise”, the Regional Natural Parks of “Les Bauges”, “Queyras” and “Vercors”, the Natural Reserves of “Hauts-Plateaux du Vercors” and “Marais de Lavours”, and the Alpine Botanic Gardens of “Lautaret” and “Champex”, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryline Pellerin.

Additional information

Communicated by Rainer Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellerin, M., Delestrade, A., Mathieu, G. et al. Spring tree phenology in the Alps: effects of air temperature, altitude and local topography. Eur J Forest Res 131, 1957–1965 (2012). https://doi.org/10.1007/s10342-012-0646-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0646-1

Keywords

Navigation