Skip to main content
Log in

Vertical distribution and soil organic matter composition in a montane cloud forest, Oaxaca, Mexico

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In montane cloud forests (MCF), the main soil organic carbon (SOC) pool is believed to be constituted by organic debris accumulated on soil surface and, to a lesser extent, by the organic fraction associated with the mineral matrix. The vertical distribution of SOC within soil has strong implications on the composition, stabilization and turnover of the soil organic matter (SOM). In ecosystems like MCF, where the climatic and edaphic conditions varied with altitude, the SOM accumulation and stabilization mechanisms possibly respond to these changes. For that reason, we studied the vertical distribution, accumulation and chemical composition of SOM in five montane cloud forest communities located between 1,500 and 2,500 m a.s.l. Two main SOC accumulation patterns were found: one at 1,500, 1,950 and 2,400 m a.s.l., with SOC content gradually decreasing with depth (cumulative); and another at 2,050 and 2,500 m a.s.l. where SOC had a strong maximum in the surface horizon and a less pronounced increase the spodic horizon (eluviation–illuviation pattern). The total SOC pool in soil decreased in inverse relation to altitude from 227 C ha−1 at 1,500 m a.s.l. down to 143 mg C ha−1 at 2,500 m a.s.l. About 40–60 % of total SOC content corresponded to the surficial organic horizon. The chemical fractionation of the SOM denoted in general predominance of the fulvic acid fraction, and high content of humin and humic acid fractions. We considered that the main SOC vertical distribution processes were related to the raw humus accumulation, decomposition in situ, podzolization in the eluviation–illuviation pattern soils mainly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvarez AG, García Calderón NE, Krasilnikov PV, Sedov SN, Targulian VO, Velázquez Rosas N (2008) Soil altitudinal sequence on base-poor parent material in a montane cloud forest in Sierra Juárez, Southern México. Geoderma 44:593–612

    Article  Google Scholar 

  • Barshad I, Rojas-Cruz L (1950) A pedologic study of a podzol soil profile from the equatorial region of Colombia, South America. Soil Sci 70:221–236

    Article  CAS  Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Academic Press, London

    Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. Agronomy series 9. American Society of Agronomy and Soil Science Society of America: ASA-SSSA, Madison, WI

  • Buurman P, Jongmans AG (2002) Podzolización, an additional paradigm. Edafología 9:107–114

    Google Scholar 

  • Buurman P, Jongmans AG (2005) Podzolisation and soil organic matter dynamics. Geoderma 125:71–83

    Article  CAS  Google Scholar 

  • Candler R, Zech W, Alt HG (1989) A comparison of water soluble organic substances in acid soils under beech and spruce in NE–Bavaria. Z Pflanz Bodenkd 152:61–65

    Article  CAS  Google Scholar 

  • Carfantan JCH (1986) Du systeme cordillérain North-Americain au domaine Caribe Université de Savoie. PhD thesis

  • Dabin B (1971) Étude d’une méthode d’extraction de la matiére humique du sol. Sci Sol 2:15–24

    Google Scholar 

  • David MB, Vance GF, Krzyszowska AJ (1995) Carbon controls an spodosol nitrogen, sulfur and phosphorus cycling. In: Kelly JM, McFee WW (eds) Carbon forms and functions in forest soils. Soil Science Society of America, USA, pp 329–353

    Google Scholar 

  • Davidson EA, Galloway LF, Strand MK (1987) Assessing available carbon: comparison of techniques across selected forest soils. Commun Soil Sci Plant Anal 18:45–64

    Article  CAS  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen. UNAM, México. ISBN 970-32-1010-4

    Google Scholar 

  • Grieve IC, Proctor J, Cousins SA (1990) Soil variation with altitude on Volcan Barva, Costa Rica. Catena 17:525–534

    Article  Google Scholar 

  • Hamilton LS, Juvic JO, Scatena FN (1995) Tropical montane cloud forests. In: Proceedings of an international symposium, Springer, New York

  • Jenny H (1980) The soil resource: origin and behavior. Springer, New York

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen–mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482

    Article  Google Scholar 

  • Meave JA, Rincón A, Romero-Romero MA (2006) Oak forests of the hyper-humid region of La Chinantla, Northern Oaxaca range, México. In: Kappelle M (ed) Ecological studies: ecology and conservation of neotropical montane oak forests, vol XXXIII, series 185. Springer, New York

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis part 2. Chemical and microbiological properties, 2nd edn. Agronomy series 9. American Society of Agronomy and Soil Science Society of America: ASA-SSSA, Madison, WI, pp 539–579

  • Orlov P (1998) Organic substances of Russian soils. Euras Soil Sci 31:1049–1050

    Google Scholar 

  • Paul EA (1984) Dynamics of soil organic matter. Plant Soil 76:275–285

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1991) Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J 55:1112–1123

    Article  Google Scholar 

  • Qualls RG, Haines BL, Swank WT (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–266

    Article  Google Scholar 

  • Romero-Romero MA, Castillo S, Meave J, van der Wal H (2000) Análisis florístico de la vegetación secundaria derivada de la selva húmeda de montaña de Santa Cruz Tepetotutla (Oaxaca), México. Bol Soc Bot Méx 67:89–106

    Google Scholar 

  • Rzedowski J, Palacios-Chávez C (1977) El bosque de Enghelhardtia (Oreomunnea) mexicana en la región de la Chinantla (Oaxaca, México): Una reliquia del cenozoico. Bol Soc Bot Méx 36:93–123

    Google Scholar 

  • Schawe M, Glatzel S, Gerold G (2007) Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69:83–90

    Article  Google Scholar 

  • Schrumpf M, Guggenberg G, Schubert C, Valerazo C, Zech W (2001) Tropical montane rain forest soils: development and nutrients status along an altitudinal gradient in the south Ecuadorian Andes. Erde 132:43–49

    Google Scholar 

  • Stadtmuller T (1987) Cloud forests in the humid tropics. A bibliographic review. United Nations University, Tokyo

  • Whitmore TC (1990) An introduction to tropical rain forests. Clarendon, Oxford

    Google Scholar 

  • Wilcke W, Oelmann Y, Schitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Projects SEP-CONACyT 55718, SEMARNAT-CONACyT 23489; PAPIIT IN104807 and IN216906-3. The authors would like to thank M. del S. Galicia Palacios, E. Fuentes Romero, R. Ramos Bello (Lab. Edafología, Facultad de Ciencias, UNAM) for chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Eugenia García-Calderón.

Additional information

Communicated by A. Merino.

This article originates from the international symposium “Managed Forests in Future Landscapes. Implications for Water and Carbon Cycles (COST action FP 0601 FORMAN)”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Arteaga, G., Krasilnikov, P. & García-Calderón, N.E. Vertical distribution and soil organic matter composition in a montane cloud forest, Oaxaca, Mexico. Eur J Forest Res 131, 1643–1651 (2012). https://doi.org/10.1007/s10342-012-0643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0643-4

Keywords

Navigation