Skip to main content
Log in

Fine-root rhizosphere and morphological adaptations to site conditions in interaction with tree mineral nutrition in young silver birch (Betula pendula Roth.) stands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Limited nutrient acquisition from soil is a key process limiting productivity in boreal forest. We investigated short-root morphological adaptations and rhizosphere effect in relation to site conditions in interaction with tree mineral nutrition. We studied seven young (8- to 14-year-old) silver birch (Betula pendula Roth.) stands on abandoned agricultural land in Estonia. Soil pH varied from 3.8 to 7.0, and soil N % from 0.07 to 0.26%. Tree nutrient (NPK) status was expressed by leaf nutrient concentrations. Leaf N correlated negatively with short-root specific length and area. Summed activity (SA) and metabolic diversity of bacteria (by BIOLOG Ecoplate™), bacterial community diversity (by DGGE) and pHKCl were determined for rhizosphere (R) and bulk soil (S) to reveal the extent of the rhizosphere effect. Bacterial activity in rhizosphere was 1.4–4.7 times higher than in bulk soil. Ratio SAR/SAS indicating root support to the rhizosphere bacterial communities decreased with increasing bulk soil pH; however, when bulk soil pH was ≥5, the decrease in SAR/SAS was insignificant, i.e. the rhizosphere effect stayed at a stable level. Diversity of bacterial community was 6% higher in bulk soil than in rhizosphere. Rhizosphere acidification occurred in studied stands when bulk soil pHKCl ≥ 5. Short-root N % correlated positively with SAR/SAS. We concluded that tree N-nutritional status was related to short-root morphological parameters but not to studied microbiological characteristics in the soil of young silver birch stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAS:

Microbial basal respiration

CLPP:

Community-level physiological profiles

DGGE:

Denaturing gradient gel electrophoresis

MD:

Metabolic diversity (Shannon index) by Biolog EcoPlates

R:

Rhizosphere

PCA:

Principal component analysis

S:

Bulk soil

SA:

Summed activity of cultivable bacteria, obtained with Biolog EcoPlates

SIR:

Substrate-induced respiration

SRA:

Specific root area

SRL:

Specific root length

References

  • Astover A, Roostalu H, Lauringson E, Lemetti I, Selge A, Talgre L, Vasiliev N, Mõtte M, Tõrra T, Penu P (2006) Changes in agricultural land use and in plant nutrient balances of arable soils in Estonia. Arch Agron Soil Sci 52:223–231. doi:10.1080/03650340600638883

    Article  Google Scholar 

  • Bader NE, Cheng WX (2007) Rhizosphere priming effect of populus fremontii obscures the temperature sensitivity of soil organic carbon respiration. Soil Biol Biochem 38:600–606. doi:10.1016/j.soilbio.2006.09.009

    Article  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J of For Res 29:260–273. doi:10.1139/cjfr-29-2-260

    Google Scholar 

  • Beck T, Öhlinger R, Baumgarten A (1996) Substrate-induced respiration. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 64–68

    Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  PubMed  CAS  Google Scholar 

  • Courty P-E, Buèe M, Diedhiou AG, Frey-Klett P, Tacon FL, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. doi:10.1016/j.soilbio.2009.12.006

    Article  CAS  Google Scholar 

  • Curt T, Prevosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255:265–279. doi:10.1023/A:1026132021506

    Article  CAS  Google Scholar 

  • Dakora FD, Philips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/B:PLSO.0000035571.26352.99

    Article  CAS  Google Scholar 

  • Dilly O, Bach H-J, Buscot F, Eschenbach C, Kutsch W, Middelhoff U, Pritsch K, Munch JC (2000) Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhoved Lake district. Appl Soil Ecol 15:201–210. doi:10.1016/S0929-1393(00)00096-2

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root life span. Adv Ecol Res 27:1–62. doi:10.1016/S0065-2504(08)60005-7

    Article  Google Scholar 

  • Fearnside PM (1999) Forests and global warming mitigation in Brazil: opportunities in the Brazilian forest sector for responses to global warming under the “clean development mechanism”. Biomass Bioenergy 16:171–189. doi:10.1016/S0961-9534(98)00071-3

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103

    Article  PubMed  CAS  Google Scholar 

  • Gobran G, Clegg S (1996) A conceptual model for nutrient availability in the mineral soil–root system. Can J Soil Sci 76:125–131

    Article  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457. doi:10.1007/s00442-004-1596-1

    Article  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213. doi:10.1016/j.gexplo.2005.08.041

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough A, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi:10.1007/s11104-009-9929-9

    Article  CAS  Google Scholar 

  • Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83(1):103–119. doi:10.1093/forestry/cpp035

    Article  Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update 2007. World soil resources reports no. 103. FAO, Rome

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  • Kaye P, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143. doi:10.1016/S0169-5347(97)01001-X

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, West Sussex, pp 115–175

    Google Scholar 

  • Liu Q, Loganathan P, Hedley M, Skinner M (2006) Root processes influencing phosphorus availability in volcanic soils under young Pinus radiata plantations. Can J of For Res 36(8):1913–1920. doi:10.1139/X06-083

    Article  CAS  Google Scholar 

  • Lochhead AG, Rouatt JW (1955) The “rhizosphere effect” on the nutritional groups of soil bacteria. Soil Sci Soc Amer Proc 19:48–49

    Article  Google Scholar 

  • Lõhmus K, Oja T, Lasn R (1989) Specific root area: a soil characteristic. Plant Soil 119:245–249. doi:10.1007/BF02370415

    Article  Google Scholar 

  • Lõhmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A, Uri V, Alama S, Kanal A (2006a) Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale areas. Plant Soil 283:1–10. doi:10.1007/s11104-005-2509-8

    Article  Google Scholar 

  • Lõhmus K, Truu J, Truu M, Kaar E, Ostonen I, Alama S, Kuznetsova T, Rosenvald K, Vares A, Uri V, Mander Ü (2006b) Black alder as a promising deciduous species for the reclaiming of oil shale mining areas. In: Brebbia CA, Mander Ü (eds) Brownfields III: prevention, assessment, rehabilitation and development of Brownfield Sites. WIT Press, Southampton, Boston, pp 87–97. doi:10.2495/BF060091

    Chapter  Google Scholar 

  • Lõhmus K, Truu J, Truu M, Kaar E, Ostonen I, Meel S, Kuznetsova T, Rosenvald K, Vares A, Uri V, Kurvits V, Mander Ü (2007) The reclamation of the North Estonian oil shale mining area. In: Mander Ü, Wiggering H, Helming K (eds) Multifunctional land use: meeting future demands for landscape goods and services. Springer, Berlin Heidelberg, pp 387–401. doi:10.1007/978-3-540-36763-5

    Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10. doi:10.1007/BF00011685

    Article  CAS  Google Scholar 

  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585. doi:10.1093/treephys/tpn050

    Article  PubMed  CAS  Google Scholar 

  • Mander Ü, Jongman RHG (2000) Consequences of land usechanges. Advances in ecological sciences, vol 5. Wessex Institute of Technology Press, Southampton, Boston

    Google Scholar 

  • Marschner H (2005) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739. doi:10.1093/jxb/eri205

    Article  PubMed  CAS  Google Scholar 

  • Mueller KE, Shann JR (2007) Effects of tree root-derived substrates and inorganic nutrients on pyrene mineralization in rhizosphere and bulk soil. J Environ Qual 36:120–127. doi:10.2134/jeq2006.0130

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial population by denaturing gradient gel electrophoresis analyses of polymerase chain reaction-amplified genes coding for 16s rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Öhlinger R (1996) Soil respiration by titration. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 95–98

    Google Scholar 

  • Oleksyn J, Zytkowiak R, Reich PB, Tjoelker MG, Karolewski P (2000) Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees. Trees 14:271–281. doi:10.1007/PL00009768

    Article  Google Scholar 

  • Ostonen I, Lõhmus K, Lasn R (1999) The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil 208:283–292. doi:10.1023/A:1004552907597

    Article  CAS  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007a) Specific root length as an indicator of environmental change. Plant Biosyst 14:426–442. doi:10.1080/11263500701626069

    Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007b) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    PubMed  Google Scholar 

  • Ostonen I, Tedersoo L, Suvi T, Lõhmus K (2009) Does a fungal species drive ectomycorrhizal root traits in Alnus? Can J For Res 39:1787–1796. doi:10.1111/j.1469-8137.2009.02792.x

    Article  CAS  Google Scholar 

  • Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manag 32:1–38

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Butron AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    PubMed  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:93–309

    Article  Google Scholar 

  • Priha O, Hallantie T, Smolander A (1999) Comparing microbial biomass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol Fertil Soils 30:14–19. doi:10.1007/s003740050581

    Article  CAS  Google Scholar 

  • Radersma S, Grierson P (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219. doi:10.1023/B:PLSO.0000020970.40167.40

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–405

    Article  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a reestablishing forest. Nature 400:56–58. doi:10.1038/21867

    Article  CAS  Google Scholar 

  • Rosenvald K, Kuznetsova T, Lõhmus K, Ostonen I, Truu M, Truu J, Uri V (2011) Dynamics of rhizosphere processes and soil formation in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol Eng. doi: 10.1016/j.ecoleng.2010.05.011

  • Ryser P (2006) The mysterious root length. Plant and Soil 286: 1–6. The mysterious root length. doi: 10.1007/s11104-006-9096-1

    Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393. doi:10.1016/j.tim.2004.06.008

    Article  PubMed  CAS  Google Scholar 

  • Söderberg KH, Probanza A, Jumpponen A, Bååth E (2004) The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soiland cfu-PLFA techniques. Appl Soil Ecol 25:135–145. doi:10.1016/j.apsoil.2003.08.005c

    Article  Google Scholar 

  • StatSoft, Inc. (2002). STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, Web: http://www.statsoft.com

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Trocha LK, Mucha J, Eissenstat DM, Reich PB, Oleksyn J (2010) Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiol 30:648–654. doi:10.1093/treephys/tpq014

    Article  PubMed  CAS  Google Scholar 

  • Truu M (2008) Impact of land use on microbial communities in Estonian soils. Doctoral dissertation, University of Tartu, http://hdl.handle.net/10062/7791

  • Uri V, Lõhmus K, Ostonen I, Tullus H, Lastik R, Vildo M (2007a) Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur J Forest Res 126:495–506. doi:10.1007/s10342-007-0171-9

    Article  Google Scholar 

  • Uri V, Vares A, Tullus H, Kanal A (2007b) Above-ground biomass production and nutrient accumulation in young stands of silver birch on abandoned agricultural land. Biomass Bioenergy 31:195–204. doi:10.1016/j.biombioe.2006.08.003

    Article  CAS  Google Scholar 

  • van der Heijden EW, Kuyper ThW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680. doi:10.1034/j.1600-0706.2003.10638.x

    Article  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 477–501

    Google Scholar 

  • Weixin C, Qiangli Z, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288. doi:10.1016/S0038-0717(96)00138-1

    Article  Google Scholar 

  • White C, Tardif JC, Adkins A, Staniforth R (2005) Functional diversity of microbial communities in the mixed boreal plain forest of central Canada. Soil Biol Biochem 37:1359–1372. doi:10.1016/j.soilbio.2004.12.007

    Article  CAS  Google Scholar 

  • Zhao Q, Zeng DH, Lee DK, He XY, Fan ZP, Jin YH (2007) Effects of Pinus sylvestris var. mongolica afforestation on soil phosphorus status of the Keerqin Sandy Lands in China. J Arid Environ 69:569–582. doi:10.1016/j.jaridenv.2006.11.004

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants No. 7792 and 7452 of the Estonian Science Foundation, by Target Projects No. SF0180127s08 and SF0182732s06 of the Ministry of Education and Research of the Republic of Estonia and by the EU through the European Regional Development Fund (Center of Excellence FIBIR). We thank Dr. Jaak Jaagus for meteorological information for the stands, Dr. Arno Kanal for his kind help in soil taxonomy, and Mr. Ilmar Part for linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Rosenvald.

Additional information

Communicated by A. Merino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenvald, K., Ostonen, I., Truu, M. et al. Fine-root rhizosphere and morphological adaptations to site conditions in interaction with tree mineral nutrition in young silver birch (Betula pendula Roth.) stands. Eur J Forest Res 130, 1055–1066 (2011). https://doi.org/10.1007/s10342-011-0492-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0492-6

Keywords

Navigation