Skip to main content
Log in

A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This article compares three methods for forest resource estimation based on remote sensing features extracted from Airborne laser scanning and CIR orthophotos. The estimation was made exemplarily for the total stem volume of trees for a given area, measured in cubic metres per hectare [m³ ha−1] (as one of the most important quantitative parameters to characterise a forest stand). The following methods were compared: Regression Analysis (RA), k-NN (nearest neighbour) method and a method that utilises regional yield tables, referred to as the yield table method (YT-method). The estimation of stem volume was examined in a mixed forest in Southern Germany using 300 circular inventory plots, each with a size of 452 m². Remote sensing features relating to vegetation height and structures were extracted and used as input variables in the different approaches. The accuracy of the estimation was analysed using scatter plots and quantified using absolute and relative root mean square errors (RMSE). The comparison was made for all plots, as well as for averaged plot values located within forest stands that have the same age class. On “plot level” the RMSE yielded 79.79 m³ ha−1 (RA), 81.93 m³ ha−1 (k-NN) and 81.78 m³ ha−1 (YT-method) and for the averaged values 35.75 m³ ha−1 (RA), 35.06 m³ ha−1 (k-NN) and 42.98 m³ ha−1 (YT-method). Advantages and disadvantages, as well as requirements, of the methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bortz J (2005) Statistics. Springer, Heidelberg

    Google Scholar 

  • Breidenbach J (2008) Regionalization of forest inventories using active remote sensing techniques. Dissertation, University of Freiburg

  • Burschel P, Huss J (1997) Grundriß des Waldbaus, Parey, Berlin

  • Dees M, Straub C, Wang Y, Koch B, Weinacker H (2006a) Auswertung von zwei Laserscanner-Testdatensätzen. Waldkarten und Kenngrößen des Waldes. Internal report of a demonstration project for E.ON-Ruhrgas, Essen

  • Dees M, Straub C, Langar P, Koch B (2006b) Remote sensing based concepts utilizing SPOT 5 and LIDAR for forest habitat mapping and monitoring under the EU Habitat Directive. In: Lamb A, Hill R, Wilson D, Bock M, Ivits E, Dees M, Hemphil S, Koch B (eds) ONP 10 Test & Benchmarks Report. Part of the geoland project reporting dossier, pp 53–78

  • Duvenhorst J (1998) Photogrammetrie und Luftbildinterpretation für bestandes-und stichprobenweise Forstinventuren, Dissertation, University of Freiburg

  • Elmqvist M, Jungert E, Lantz F, Persson Å, Söderman U (2001) Terrain modelling and analysis using laser scanner data. Int Arch Photogramm Remote Sens XXXIV-3(W4), Annapolis

    Google Scholar 

  • Franco Lopez H, Ek AR, Bauer ME (2001) Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens Environ 77:251–274

    Article  Google Scholar 

  • Hildebrandt F (1996) Fernerkundung und Luftbildmessung. Wichmann, Heidelberg

    Google Scholar 

  • Hollaus M, Wagner W, Maier B, Schadauer K (2007) Airborne laser scanning of forest stem volume in a mountainous environment. Sensors 7:1559–1577. doi:10.3390/s7081559

    Article  Google Scholar 

  • Hugershoff R (1933) Die photogrammetrische Vorratsermittlung. Tharandter Forstliches Jahrb 84:159–166

    Google Scholar 

  • Huss J (1984) Luftbildmessung und Fernerkundung in der Forstwirtschaft. Wichmann, Karlsruhe

    Google Scholar 

  • Hyyppä J, Yu X, Hyyppä H, Maltamo M (2006) Methods of airborne laser scanning for forest information extraction. In: Koukal T, Schneider W (eds) Proceedings of the international workshop “3D remote sensing in forestry”. University of Natural Resources and Applied Life Sciences, Vienna, pp 63–78

    Google Scholar 

  • Koch B, Dees M (2008) Forestry applications. In: Li Z, Chen J, Baltsavias E (eds) Advances in photogrammetry remote sensing and spatial information sciences. Taylor and Francis Group, London, pp 439–465

    Chapter  Google Scholar 

  • Kramer K, Akça A (1995) Leitfaden zur Waldmesslehre. J.D. Sauerländer’s Verlag, Frankfurt am Main

    Google Scholar 

  • Kraus K (2004) Photogrammetrie–Band 1. De Gruyter, Berlin

    Google Scholar 

  • Lund HG, Horak FJ, Garratt MW (1981) Relationship between canopy cover and tree stocking for classifying forest land. Unpublished Report. U.S. Department of Agriculture, Forest Service; Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, 6 p

  • Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006) Nonparametric estimation of stem volume using airborne laser scanning, aerial photography and stand-register data. Can J Res 36:426–436. doi:10.1139/x05-246

    Article  Google Scholar 

  • McRoberts RE, Nelson MD, Wendt DG (2002) Stratified estimation of forest area using satellite imagery, inventory data, and the k-nearest neighbors technique. Remote Sens Environ 82:457–468. doi:10.1016/S0034-4257(02)00064-0

    Article  Google Scholar 

  • Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne laser scanning LIDAR. Photogramm Eng Remote Sens 66(11):1367–1371

    Google Scholar 

  • Mette T (2005) Forest biomass estimation from polarimetric SAR interferometry. Dissertation, University of Munich

  • Mitchell TM (1997) Machine learning. McGraw-Hill Series in Computer Science, London

    Google Scholar 

  • MLR (1993) Hilfstabellen für die Forsteinrichtung. Ministerium für Ländlichen Raum, Ernährung. Landwirtschaft und Forsten Baden-Württemberg, Stuttgart

    Google Scholar 

  • Moeur M, Stage AR (1995) Most similar neighbor: an improved sampling inference procedure for natural resource planning. For Sci 41(2):337–359

    Google Scholar 

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253. doi:10.1016/S0034-4257(97)00041-2

    Article  Google Scholar 

  • Næsset E (2004a) Laser scanning of forest resources: the nordic experience. Scand J For Res 19:482–499. doi:10.1080/02827580410019553

    Article  Google Scholar 

  • Næsset E (2004b) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19:164–179. doi:10.1080/02827580310019257

    Article  Google Scholar 

  • Næsset E, Bjerknes K (2001) Estimating tree heights and number of stems in young forest stands using airborne laser Scanner data. Remote Sens Environ 78:328–340. doi:10.1016/S0034-4257(01)00228-0

    Article  Google Scholar 

  • Packalén P, Maltamo M (2007) The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Eviron 109(3):328–341

    Article  Google Scholar 

  • Rieger W, Eckmüllner O, Müllner H, Reiter T (1999) Laser-Scanning for the derivation of forest stand parameters. In: Beata MC (eds) Proceedings of the ISPRS Workshop “Mapping surface structure and topography by airborne and spaceborne lasers”, La Jolla, USA

  • Straub C, Dees M, Weinacker H, Koch B (2009) Using airborne laser scanner data and CIR orthophotos to estimate the stem volume of forest stands. Photogrammetrie, Fernerkundung, Geoinformation 3/09:277–287

    Google Scholar 

  • Tompoo E (2006) The finish multi source national forest inventory–small area estimation and map production. In: Kangas A, Maltamo M (eds) Forest inventory–methodology and applications. Springer, Netherlands, pp 195–224

    Chapter  Google Scholar 

  • Tompoo E, Nilsson M, Rosengren M, Aalto P, Kennedy P (2002) Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sens Environ 82:151–171

    Google Scholar 

  • Weinacker H, Koch B, Heyder U, Weinacker R (2004) Development of filtering, segmentation and modelling modules for LIDAR and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens XXXVI-8(W2), Freiburg

Download references

Acknowledgments

The authors would like to express their gratitude to the Deutsche Bundesstiftung Umwelt (DBU) which provided funding for the project within the doctoral scholarship programme. Furthermore, we would like to thank the Forest Research Institute of Baden-Württemberg (FVA), in particular Arne Nothdurft, for providing the reference data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Straub.

Additional information

Communicated by Daniel Mandallaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, C., Weinacker, H. & Koch, B. A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos. Eur J Forest Res 129, 1069–1080 (2010). https://doi.org/10.1007/s10342-010-0391-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0391-2

Keywords

Navigation