Skip to main content
Log in

Variation components in leaf morphology of recruits of two hybridising oaks [Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd.] at small spatial scale

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Leaf morphological variation was examined in recruits of two hybridising oaks in a small sympatric area from Central Spain. Nuclear microsatellites were used to identify hybrids and assess the parental lineage. By Bayesian clustering analysis, 5% of hybrids were found. Principal component analysis was used to reduce 15 morphometric variables to four components associated with leaf size, lobation/pubescence and overall shape of the leaf. The percentage of variance due to genetic factors was evaluated through nested analysis of variance. As much as 70% of variance component was due to the factor “species” for lobation/pubescence, suggesting high adaptive value for these traits, possibly related to ecological constraints of the species. The genetic component of variance for leaf size and overall shape of the leaf was below 33%. Age and height of the recruits did not correlate with sun-leaf morphology. Competition indexes and diameter of the recruits showed slight, although significant, correlations with leaf size and lobation/pubescence components, pointing to some trade-offs between competition for light and leaf morphology of Q. petraea and Q. pyrenaica recruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly DD, Donoghue MJ (1998) Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). Am Nat 152:767–791

    Article  CAS  PubMed  Google Scholar 

  • Asuka Y, Tomaru N, Muneara Y et al (2005) Half-sib family structure of Fagus crenata saplings in an old-growth beech-dwarf bamboo forest. Mol Ecol 14(8):2565–2575

    Article  CAS  PubMed  Google Scholar 

  • Bruschi P, Vendramin GG, Bussotti F et al (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd (Fagaceae) in northern and central Italy. Ann Bot 8:325–333

    Article  Google Scholar 

  • Corner EJH (1949) The Durian theory of the origin of the modern tree. Ann Bot 13:367–414

    Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridisation between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    Article  CAS  Google Scholar 

  • Dow BD, Ashley MV (1998) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70

    Article  Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ehleringer J, Mooney H (1978) Leaf hairs: effects on physiological activity and adaptive value to desert shrubs. Oecologia 37:183–200

    Article  Google Scholar 

  • Franco J (1990) Quercus. In: Castroviejo S, Lainz M, López-González G et al (eds) Flora Ibérica. Plantas vasculares de la Península Ibérica e Islas Baleares, vol II. CSIC, Madrid, pp 15–36

    Google Scholar 

  • Gerber S, Mariette S, Streiff R et al (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Gerber S, Chabrier P, Kremer A (2003) FaMoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481

    Article  CAS  Google Scholar 

  • Givnish TJ (1979) On the adaptive significance of leaf form. In: Solbrig OT, Jain S, Johnson GB et al (eds) Topics in plant population biology. Columbia University Press, New York, pp 375–407

    Google Scholar 

  • González-Martínez SC, Burczyk J, Nathan R et al (2006) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15:4577–4588

    Article  PubMed  Google Scholar 

  • Goto S, Shimatani K, Yoshimaru H et al (2006) Fat-tailed gene flow in the dioecious canopy tree species Fraxinus mandshurica var. japonica revealed by microsatellites. Mol Ecol 15:2985–2996

    Article  CAS  PubMed  Google Scholar 

  • Gugerli F, Walser JC, Dounavi K et al (2007) Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest. Ann Bot 99:713–722

    Article  CAS  PubMed  Google Scholar 

  • Hardesty BT, Hubbell SP, Bermingham E (2006) Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecol Lett 9:516–525

    Article  PubMed  Google Scholar 

  • Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees Struct Funct 18:566–575

    Google Scholar 

  • Kampfer S, Lexer C, Glössl J et al (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Kerstetter RA, Poethig RS (1998) The specification of leaf identity during shoot development. Annu Rev Cell Dev Biol 14:373–398

    Article  CAS  PubMed  Google Scholar 

  • Kissling P (1977) Les poils des quatre espèces de chênes du Jura (Quercus pubescens, Q. petraea, Q. robur et Q. cerris). Ber Schweiz Bot Ges 87:1–18

    Google Scholar 

  • Kleinschmit J, Elsner G, Schlums K (1996) Interspecific variation between Quercus robur and Quercus petraea for leaf morphological traits. In: Kremer A, Muhs AJ (eds) Inter- and intra-specific variation in European oaks: evolutionary implications and practical consequences. Conference proceedings. EC Directorate—General XII Science, Research and Development, EUR 16717 EN, Brussels, pp 3–16

  • Kremer A, Dupouey JL, Deans D et al (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann For Sci 59:777–787

    Article  Google Scholar 

  • Lynn DE, Waldren S (2001) Morphological variation in populations of Ranunculus repens from the temporary limestone lakes (turloughs) in the West of Ireland. Ann Bot 87:9–17

    Article  Google Scholar 

  • Morales F, Abadía A, Abadía J et al (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. Ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees Struct Funct 16:504–510

    CAS  Google Scholar 

  • Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82(2):453–469

    Google Scholar 

  • Niinemets U, Portsmuth A, Tobias M (2006) Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytol 171:91–104

    Article  PubMed  Google Scholar 

  • Niklas KJ (1989) The effect of leaf-lobing on the interception of direct solar radiation. Oecologia 80:59–64

    Article  Google Scholar 

  • Pardo F, Gil L, Pardos JA (2004) Structure and composition of pole-stage stands developed in an ancient wood pasture in central Spain. Forestry 77:67–74

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB et al (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Google Scholar 

  • Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235

    Article  Google Scholar 

  • Saintagne C, Bodénès C, Barreneche T et al (2004) Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity 92:20–30

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Kelliher FM, Körner C et al (1994) Relationship between maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Schwarz O (1964) Quercus L. In: Tutin TG, Heywood VH, Burges NA et al (eds) Flora Europaea, vol 1: Lycopodiaceae to Platanaceae. Cambridge University Press, Cambridge, pp 61–64

  • Simms EL, Rausher MD (1992) Quantitative genetics. In: Fritz RS, Simms EL (eds) Ecology and evolution of plant resistance. University of Chicago Press, Chicago, pp 42–68

    Google Scholar 

  • Sisó S, Camarero JJ, Gil-Pelegrín E (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees 15:341–345

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E et al (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Sork VL, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465

    Article  PubMed  CAS  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez S, Hardy OJ et al (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219

    Article  PubMed  CAS  Google Scholar 

  • Valladares F, Niinemets U (2007) The architecture of plant crowns: from design rules to light capture and performance. In: Pugnaire FI, Valladares F (eds) Functional plant ecology. CRC, Boca Raton, pp 101–139

    Google Scholar 

  • Vicioso C (1950) Revisión del género Quercus en España. IFIE, Ministerio de Agricultura, Madrid

    Google Scholar 

  • Vogel S (1968) “Sun leaves” and “shade leaves”: differences in convective heat dissipation. Ecology 49:1203–1204

    Article  Google Scholar 

  • Vogel S (1970) Convective cooling at low airspeeds and the shapes of broad leaves. J Exp Bot 21:91–101

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles T et al (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

Download references

Acknowledgments

The Autonomic Government of Madrid Region, the Technical University of Madrid and the Spanish Ministry of Education and Science provided financial assistance to the following projects: CAM 07M/0011/2000, CAM 07M/0012/2002, R05/11065 and AGL2006-00813. We wish to thank Drs N. Nanos and J. Rodríguez-Calcerrada for valuable suggestions and comments on the manuscript, J. Alonso and M.C. García for field assistance and M. Venturas for suggestions on English grammar and style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gil.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López de Heredia, U., Valbuena-Carabaña, M., Córdoba, M. et al. Variation components in leaf morphology of recruits of two hybridising oaks [Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd.] at small spatial scale. Eur J Forest Res 128, 543–554 (2009). https://doi.org/10.1007/s10342-009-0302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0302-6

Keywords

Navigation