Skip to main content
Log in

Carbon dioxide fluxes across the Sierra de Guadarrama, Spain

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Understanding the spatial and temporal variation in soil respiration within small geographic areas is essential to accurately assess the carbon budget on a global scale. In this study, we investigated the factors controlling soil respiration in an altitudinal gradient in a southern Mediterranean mixed pine–oak forest ecosystem in the north face of the Sierra de Guadarrama in Spain. Soil respiration was measured in five Pinus sylvestris L. plots over a period of 1 year by means of a closed dynamic system (LI-COR 6400). Soil temperature and water content were measured at the same time as soil respiration. Other soil physico-chemical and microbiological properties were measured during the study. Measured soil respiration ranged from 6.8 to 1.4 μmol m−2 s−1, showing the highest values at plots situated at higher elevation. Q 10 values ranged between 1.30 and 2.04, while R 10 values ranged between 2.0 and 3.6. The results indicate that the seasonal variation of soil respiration was mainly controlled by soil temperature and moisture. Among sites, soil carbon and nitrogen stocks regulate soil respiration in addition to soil temperature and moisture. Our results suggest that application of standard models to estimate soil respiration for small geographic areas may not be adequate unless other factors are considered in addition to soil temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen W, Zhang Q, Chilar J, Bauhus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using above-ground measurements: a new approach. Plant Soil 256:31–46. doi:10.1007/s11104-005-8503-3

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408(6809):184–187. doi:10.1038/35041539

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227. doi:10.1046/j.1365-2486.1998.00128.x

    Article  Google Scholar 

  • Dilustro JJ, Collins B, Duncan L, Crawford C (2005) Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. For Ecol Manage 204:85–95. doi:10.1016/j.foreco.2004.09.001

    Article  Google Scholar 

  • Garcia del Barrio JM, Lopez Arias JM, Morales D (1997) Producción y renovación de acículas en la cubierta árborea de un pinar de Pinus sylvestris en la Sierra de Guadarrama. Valsaín. Segovia. Actas IRATI 97. II Congreso Forestal Español. Tomo I, pp 325–330

  • Garten CT, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136:342–352. doi:10.1016/j.geoderma.2006.03.049

    Article  CAS  Google Scholar 

  • Goh KM (2004) Carbon sequestration and stabilization in soils: implications for soil productivity and climate change. Soil Sci Plant Nutr 50(4):467–476

    CAS  Google Scholar 

  • González Cascón MR, Lopez Arias M, Serrano M, Minaya MT (1994) Balance de entradas/salidas de cationes en una pequeña cuenca forestal de Pinus sylvestris en la Sierra de Guadarrama. Ecologia 8:157–166

    Google Scholar 

  • Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fertil Soils 27:408–416. doi:10.1007/s003740050451

    Article  CAS  Google Scholar 

  • Janssens IA, Dore S, Epron D et al. (2003) Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Canopy fluxes of energy, water and carbon dioxide of European forests. Springer, Berlin, pp 235–256

  • Janssens IA, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Glob Chang Biol 9:911–918. doi:10.1046/j.1365-2486.2003.00636.x

    Article  Google Scholar 

  • Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Chang Biol 9:1427–1437. doi:10.1046/j.1365-2486.2003.00668.x

    Article  Google Scholar 

  • Li H, Yan J, Yue X, Wang M (2007) Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agric For Meteorol. doi:10.1016/jl.agrformet.2007.10.009

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil. Tellus B Chem Phys Meteorol 44B:81–99

    Article  CAS  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis P, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Glob Chang Biol 8:851–866. doi:10.1046/j.1365-2486.2002.00521.x

    Article  Google Scholar 

  • Rodeghiero M, Cescatti A (2005) Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol 11:1024–1041. doi:10.1111/j.1365-2486.2005.00963.x

    Article  Google Scholar 

  • Tang J, Baldocchi D, Xu L (2005a) Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1298–1304. doi:10.1111/j.1365-2486.2005.00978.x

    Article  Google Scholar 

  • Tang J, Misson L, Gershenson A, Cheng W, Goldstein A (2005b) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric For Meteorol 132:212–227. doi:10.1016/j.agrformet.2005.07.011

    Article  Google Scholar 

  • Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–121. doi:10.1111/j.1365-2486.2005.01081.x

    Article  Google Scholar 

  • Wang Y, Amundson R, Niu XF (2000) Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochem Cycles 14:199–211. doi:10.1029/1999GB900074

    Article  CAS  Google Scholar 

  • Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial temporal variation in a young ponderosa pine plantation in northern California. Glob Chang Biol 7:667–677. doi:10.1046/j.1354-1013.2001.00435.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted in the framework of Spanish HU2005-0023, AGL2004-01941 and CGL 2006-02922/CLI projects and the European COST 639 (BurnOut) project. The authors would like to express their gratitude to Mr. Javier Dones, Mr. Manuel Lopez Arias and Mr. Jose M. Grau for their valuable assistance with field aspects and for the data provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Inclán.

Additional information

Communicated by A. Merino and A. Blanco.

This article belongs to the special issue “Plant–soil relationships in Southern European forests”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inclán, R., Uribe, C., De La Torre, D. et al. Carbon dioxide fluxes across the Sierra de Guadarrama, Spain. Eur J Forest Res 129, 93–100 (2010). https://doi.org/10.1007/s10342-008-0247-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0247-1

Keywords

Navigation