Skip to main content

Advertisement

Log in

Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective of this study was to characterize the variation of infiltration capacity, hydraulic conductivity and soil organoprofile development on forest sites with comparable geological substrate, soil type and climatic conditions, but different stand ages and tree species in terms of the effects of forest transformation upon soil hydrological properties. The Kahlenberg forest area (50 km northeast of Berlin in the German northeastern lowlands) under investigation contains stands of Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica) of different age structures forming a transformation chronosequence from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any significant effect on water infiltration rate. Moreover, water infiltration in these soils is impeded by their hydrophobic properties. Along the experimental chronosequence of forest transformation, the thickness of the forest floor layer decreases due to enhanced decomposition and humification intensities. By contrast, the thickness of the humous topsoil increases. Presumably, changes in soil organic matter storage and quality caused by the management practice of forest transformation affect the persistence and degree of water repellency in the soil, which in turn influences the hydraulic properties of the experimental soils. The results indicate clearly that soils play a crucial role for water retention and therefore, in overland flow prevention. There is a need to have more awareness on the intimate link between the land use and soil properties and their possible effects on flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ankeny MD, Kaspar TC, Horton R (1988) Design for an automated tension infiltrometer. Soil Sci Soc Am J 52:893–896

    Article  Google Scholar 

  • Ankeny MD, Ahmed M, Kaspar TC, Horton R (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Sci Soc Am J 55:467–470

    Article  Google Scholar 

  • Baritz R (2003) Humus forms in forests of the northeastern German lowlands. Geol Jahrb Reihe F, Heft 3, Schweitzerbart, Stuttgart

  • Bednorz F, Reichstein M, Broll G, Holtmeier F-K, Urfer W (2000) Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): spatial heterogeneity and classification. Arct Antarct Alp Res 32:21–29

    Article  Google Scholar 

  • Bens O, Buczko U, Sieber S, Hüttl RF (2006) Spatial variability of humus layer thickness and humus forms under different pine–beech forest transformation stages in NE Germany. J Plant Nutr Soil Sci 169:5–15

    Article  CAS  Google Scholar 

  • Binkley D (1995) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop. Agron. Soc, New Zealand Spec. Pub. 10, Lincoln University Press

  • Binkley D (1999) Disturbance in temperate forests of the northern hemisphere. In: Walker LR (ed) Ecosystems of disturbed ground. Ecosystems of the world 16. Elsevier, Amsterdam 659:453–466

  • Bronstert A, Niehoff D, Fritsch U (2003) Auswirkungen von Landnutzungsänderungen auf die Hochwasserentstehung. Petermanns Geogr Mittlg 147:24–33

    Google Scholar 

  • Buczko U, Bens O (2006) Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Sci Soc Am J 70:718–727

    Article  CAS  Google Scholar 

  • Buczko U, Bens O, Fischer H, Hüttl RF (2002) Water repellency in sandy Luvisols under different forest transformation stages in northeast Germany. Geoderma 109:1–18

    Article  Google Scholar 

  • Buczko U, Bens O, Hüttl RF (2005) Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126:317–336

    Article  Google Scholar 

  • Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Forstl. Forschungsber. 126, München

  • Carrillo MLK, Letey J, Yates SR (1999) Measurement of initial soil-water contact angle of water repellent soils. Soil Sci Soc Am J 63:433–436

    Article  CAS  Google Scholar 

  • De Jong R, Campbell CA, Nicholaichuk W (1983) Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples. Can J Soil Sci 63:291–302

    Article  Google Scholar 

  • De Jonge LW, Jacobsen OH, Moldrup P (1999) Soil water repellency: effects of water content, temperature, and particle size. Soil Sci Soc Am J 63:437–442

    Article  Google Scholar 

  • Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231/232:134–147

    Article  Google Scholar 

  • Emerson WW (1995) Water retention, organic C and soil texture. Austr J Soil Sci 33:241–251

    Article  Google Scholar 

  • Feng GL, Letey J, Wu L (2001) Water ponding depths affect temporal infiltration rates in a water-repellent sand. Soil Sci Soc Am J 65:315–320

    Article  CAS  Google Scholar 

  • Fischer H, Bens O, Hüttl RF (2002) Changes in humus form, humus stock, and soil organic matter distribution as affected by forest transformation in northeastern lowlands of Germany. Forstw Cbl 121:322–334

    Article  CAS  Google Scholar 

  • Forster F, Keller HM, Rickenmann D, Röthlisberger G (1994) Hochwasser. Schweizer Z Forstw 145:27–45

    Google Scholar 

  • Fritz P (ed) (2006) Ökologischer Waldumbau in Deutschland—Fragen, Antworten, Perspektiven. Oekon, München

  • Gerboth G (1998) Änderungen von Humusformen im nördlichen Oberschwaben. Freiburger Forstl. For. 3, Freiburg

  • Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194

    Google Scholar 

  • Ilvesniemi H (1991) Spatial and temporal variation of soil chemical characteristics in pine sites in southern Finland. Silva Fennica 25:99–108

    Google Scholar 

  • Johansson MB (1986) Chemical composition and decomposition pattern of leaf litters from forest trees in Sweden with special reference to methodological aspects and site properties. Dissertation, Department of Forest Soils, Swedish University of Agricultural Sciences

  • Katzensteiner K, Englisch M, Hager H (1999) Taxonomy of forest humus forms. A proposal for a European classification. unpublished working paper, University of Vienna

  • Konopatzky A (1997) Zum Standorts- und Vegetationswandel in den Wäldern der Länder Brandenburg, Mecklenburg-Vorpommern und des Tieflandsteils von Sachsen-Anhalt. FZW der Univeristy Göttingen 56, series B, pp 125

  • Kögel-Knabner I, Ziegler F (1993) Carbon distribution in different compartments of forest soils. Geoderma 56:515–525

    Article  Google Scholar 

  • Liski J (1995) Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand—effect of trees and implication for sampling. Silva Fennica 29:255–266

    Google Scholar 

  • Lüscher P, Zürcher K (2003) Waldwirkung und Hochwasserschutz: Eine differenzierte Betrachtungsweise ist angebracht. LWF-Bericht 40:30–33

    Google Scholar 

  • Moore ID, Burch GJ, Wallbrink PJ (1985) Preferential flow and hydraulic conductivity of forest soils. Soil Sci Soc Am J 50:876–881

    Article  Google Scholar 

  • Perroux KM, White I (1988) Design for disk permeameters. Soil Sci Soc Am J 52:1205–1215

    Article  Google Scholar 

  • Pöhhacker R (1995) Steuerungsfaktoren des Streuabbaus. Bayreuther Bodenkundliche Ber. 39:132

    Google Scholar 

  • Puhe J, Ulrich B (2000) Global climate change and human impacts on forest ecosystems. Ecological studies, vol. 143, Springer, Berlin Heidelberg New York

  • Rastin N (1994) Biochemischer und mikrobiologischer Zustand verschiedener Waldböden. Schriftenreihe der Forstl. Fak. der Univ. Göttingen 115:148

    Google Scholar 

  • Rehfuess KE (1990) Waldböden—Entwicklung, Eigenschaften und Nutzung, 2nd edn. Parey, Berlin

    Google Scholar 

  • Reynolds WD, Elrick DE (1990) Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci Soc Am J 139:1233–1241

    Article  Google Scholar 

  • Reynolds WD, Elrick DE, Clothier BE (1985) The constant head well permeameter: I. Effect of unsaturated flow. Soil Sci 139:172–180

    Article  Google Scholar 

  • Rumberger MD, Münzenberger B, Bens O, Ehrig F, Lentzsch P, Hüttl RF (2004) Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant Soil 264:111–126

    Article  CAS  Google Scholar 

  • Sachs L (1992) Applied statistics, 7th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Seegert J, Armbruster M., Feger KH, Bernhofer C (2003) Einfluss unterschiedlicher Bestockung auf die Dynamik des Gebietsabflusses. AFZ/Der Wald 8:419–423

    Google Scholar 

  • Stackebrandt W, Manhenke V (eds) (2002) Atlas zur Geologie von Brandenburg. 2nd edn. Landesamt für Geowissenschaften und Rohstoffe Brandenburg, Kleinmachnow

  • Tillman RW, Scotter DR, Wallis MG, Clothier BE (1989) Water-repellency and its measurement by using intrinsic sorptivity. Aust J Soil Res 27:637–644

    Article  Google Scholar 

  • Ulrich B, Puhe J (1994) Auswirkungen der zukünftigen Klimaveränderungen auf mitteleuropäische Waldökosysteme und deren Rückkopplung auf den Treibhauseffekt. In: Enquete-Kommission Schutz der Erdatmosphäre des Deutschen Bundestags (ed) Wälder. Economica 2, pp 1–208

  • Wahl NA (1995) Vergleichende Erfassung der Bodenmakrofauna (Oligochaeta: Lumbricidae) typischer Ackerböden einer norddeutschen Jungmoränen-Landschaft. Diploma Thesis, University of Kiel, 144 p

  • Wang D, Yates SR, Lowery B, Genuchten MT van (1998) Estimating soil hydraulic properties using tension infiltrometers with varying disk diameters. Soil Sci 163:356–361

    Article  CAS  Google Scholar 

  • Warrick AW (1992) Models for disk infiltrometers. Water Resour Res 28:1319–1327

    Article  Google Scholar 

  • Watson KW, Luxmoore RJ (1986) Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci Soc Am J 50:578–582

    Article  Google Scholar 

  • Weir GJ (1987) Steady infiltration from small shallow circular ponds. Water Resour Res 23:733–736

    Google Scholar 

  • White I, Perroux KM (1989) Estimation of unsaturated hydraulic conductivity from field sorptivity measurements. Soil Sci Soc Am J 53:324–329

    Article  Google Scholar 

  • Wildenschild D, Hopmanns JW, Simunek J (2001) Flow rate dependence of soil hydraulic characteristics. Soil Sci Soc Am J 65:35–48

    Article  CAS  Google Scholar 

  • Wilson GV, Luxmoore RJ (1988) Infiltration, macroporositiey, and mesoporosity distribution on two forested watersheds. Soil Sci Soc Am J 52:329–335

    Article  Google Scholar 

  • Witter JV, Jungerius PD, Harkel MJ X (1991) Modelling water erosion and the impact of water repellency. Catena 18:115–124

    Article  Google Scholar 

  • Wolters V (1989) Die Zersetzungsnahrungskette von Buchenwäldern. Untersuchungen zur ökosystemaren Bedeutung der Interaktionen zwischen Bodentieren und Mikroflora. Verh Ges Ökol XVII:213–219

    Google Scholar 

  • Wooding RA (1968) Steady infiltration from a shallow circular pond. Water Resour Res 4:1259–1273

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was financially supported by the German Ministry of Education and Research (BMBF) as subproject A 4.3 of the German Research Network `Natural Disasters´ (DFNK) under grant number 01SF9971/4, and by the project `Research on the ecological effects of forest transformation´ (grant number 0338754). We wish to thank the reviewers for their critical comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bens.

Additional information

Communicated by Franz Makeschin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bens, O., Wahl, N.A., Fischer, H. et al. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur J Forest Res 126, 101–109 (2007). https://doi.org/10.1007/s10342-006-0133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-006-0133-7

Keywords

Navigation