Skip to main content
Log in

Control of Fungal Storage Rots of Apples by Hot-Water Treatments: A Northern European Perspective

Kontrolle pilzlicher Lagerfäulen des Apfels durch Heißwasserbehandlungen: eine nordeuropäische Perspektive

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

In the Lower Elbe region of Northern Germany and in other Northern European fruit production areas, about 80 % of all storage rots of apples are caused by Neofabraea alba and N. perennans. Other pathogens include Colletotrichum acutatum, Monilinia fructigena, Phaci­diopycnis washingtonensis, Neonectria galligena, Botrytis cinerea, Penicillium expansum and Fusarium avenaceum. Hot-water treatments of freshly harvested fruits for 3 min at 50–52 °C gave high efficacies against most of these storage rots except F. avenaceum. Substantial evidence supported a heat shock-induced antimicrobial response rather than a direct killing of fungal inoculum as the principal mode of action of hot-water treatments in apples. Shorter exposures for < 30 s at 55–60 °C also provided good control of fungal storage rots and thereby offer new possibilities for this technology in Northern European fruit production. These possibilities include the integration of a hot-water unit into existing grading lines and the option to treat fruits at different time points, e.g. at harvest, after short-term storage and/or after long-term storage.

Zusammenfassung

In der Niederelbe-Region Norddeutschlands und in anderen nordeuropäischen Anbaugebieten werden etwa 80 % aller Lagerfäulen des Apfels durch Neofabraea alba und N. perennans verursacht. Zu den übrigen Schadpilzen zählen Colletotrichum acutatum, Monilinia fructigena, Phacidiopycnis washingtonensis, Neonectria galligena, Botrytis cinerea, Penicillium expansum und Fusarium avenaceum. Heißwasserbehandlungen frisch geernteter Früchte für 3 min bei 50–52 °C zeigten eine hohe Wirkung gegen die meisten Erreger, ausgenommen Fusarium avenaceum. Es lagen deutliche Hinweise darauf vor, dass die Hauptwirkung des Heißwassertauchens auf einer durch Hitzeschock induzierten antimikrobiellen Reaktion und nicht auf dem direkten Abtöten des pilzlichen Inokulums beruht. Kürzere Expositionen für < 30 Sekunden bei 55–60 °C waren ebenfalls wirksam gegen pilzliche Lagerfäulen und eröffnen neue Möglichkeiten für diese Technologie in der nordeuropäischen Obstproduktion. Diese betreffen den Einbau einer Heißwasser-Einheit in bestehende Sortieranlagen sowie Möglichkeiten der Behandlung von Früchten zu verschiedenen Zeitpunkten, beispielsweise zur Ernte, nach kurzer Lagerung und/oder nach längerer Lagerung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal P (2001) Phase transition of apple cuticles: a DSC study. Thermochim Acta 367–368:9–13

    Article  Google Scholar 

  • Amiri A, Bompeix G (2005) Diversity and population dynamics of Penicillium spp. on apples in pre- and postharvest environments: consequences for decay development. Plant Pathol 54:74–81

    Article  Google Scholar 

  • Amiri A, Bompeix G (2011) Control of Penicillium expansum with potassium phosphite and heat treatment. Crop Protect 30:222–227

    Article  CAS  Google Scholar 

  • Ben-Yehoshua S, Rodov V, Kim JJ, Carmeli S (1992) Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J Agric Food Chem 40:1217–1221

    Article  CAS  Google Scholar 

  • Blank H-G (1969) Über die Ursachen der unbefriedigenden Haltbarkeit von Äpfeln und Birnen in der Lagersaison 1968/69. Mitt d Obstbauversuchsringes d Alten Landes 24:261–266

    Google Scholar 

  • Blank H-G, Reich H (1970) Lagerungsergebnisse von Spritzversuchen mit Benomyl (Benlate). Mitt d Obstbauversuchsringes d Alten Landes 25:284–299

    Google Scholar 

  • Blažek J, Kloutvorová J, Křelinová J (2006) Incidences of storage diseases on apples of selected cultivars and advanced selection grown with and without fungicide treatments. Hort Sci 33:87–94

    Google Scholar 

  • Bömeke H, Blank H (1959) Untersuchungen zur Bekämpfung der Lagerfäulen an Finkenwerder. Mitt d Obstbauversuchsringes d Alten Landes 14:202–206

    Google Scholar 

  • Burchill R (1964) Hot water as a possible post harvest control of Gloeosporium rots of stored apples. Plant Pathol 13:106–107

    Article  Google Scholar 

  • Couey HM (1989) Heat treatment for control of postharvest diseases and insect pests of fruits. HortSci 24:198–202

    Google Scholar 

  • Edney IKL, Burchill RT, Chambers DA (1977) The control of Gloeosporium storage rot of apples by reduced spray programmes. Ann Appl Biol 87:51–56

    Article  CAS  Google Scholar 

  • Errampalli D, Northover J, Skog L, Brubacher NR, Collucci CA (2005) Control of blue mold (Penicillium expansum) by fludioxonil in apples (cv. Empire) under controlled atmosphere and cold storage conditions. Pest Manag Sci 61:591–596

    Article  CAS  PubMed  Google Scholar 

  • Fallik E (2004) Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol Technol 32:125–134

    Article  Google Scholar 

  • Fallik E, Grinberg S, Gambourg M, Klein JD, Lurie S (1996) Prestorage heat treatment reduces pathogenicity of Penicillium expansum in apple fruit. Plant Pathol 45:92–97

    Article  Google Scholar 

  • Fallik E, Grinberg S, Alkalai S, Yekutieli O, Wiseblum A, Regev R, Beres H, Bar-Lev E (1999) A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol Technol 15:25–32

    Article  Google Scholar 

  • Fallik E, Tuvia-Alkalai S, Feng X, Lurie S (2001) Ripening characterisation and decay development of stored apples after a short pre-storage hot water rinsing and brushing. Innov Food Sci Emerg Technol 2:127–132

    Article  Google Scholar 

  • Fawcett HS (1922) Packing house control of brown rot. California Citrograph 7:232–234

    Google Scholar 

  • Ferguson IB, Snelgar W, Lay-Yee M, Watkins CB, Bowen JH (1998) Expression of heat shock proteins in apple fruit in the field. Aust J Plant Physiol 25:155–163

    Article  CAS  Google Scholar 

  • Hansen T, Schadegg E (1976) Forsøg med plantebeskyttelsesmidler i frugtavlskulturer og havebrug 1975. Tidsskr Planteavl 80:587–601

    CAS  Google Scholar 

  • Kim YK, Xiao CL (2006) A postharvest fruit rot in apple caused by Phacidiopycnis washingtonensis. Plant Dis 90:1376–1381

    Article  Google Scholar 

  • Lafer G (2009) Dynamische CA-Lagerung. Erste Praxiserfahrungen mit Bio-Topaz in der Steiermark. Besseres Obst 12/2009:18–21

    Google Scholar 

  • Lurie S (1998) Postharvest heat treatments. Postharvest Biol Technol 14:257–269

    Article  Google Scholar 

  • Lurie S, Klein JD (1990) Heat treatment of ripening apples: differential effects on physiology and biochemistry. Physiol Plant 78:181–186

    Article  CAS  Google Scholar 

  • Maxin P (2007) Lagerfäulenbekämpfung mit dem Heißwassertauchverfahren. Mitt d Obstbauversuchsringes d Alten Landes 62:227–230

    Google Scholar 

  • Maxin P (2012) Improving apple quality by hot water treatment. PhD Thesis, Aarhus University, Denmark

  • Maxin P, Klopp K (2004) Die Wirkung des Heißwassertauchverfahrens gegen biotische Lagerschäden im ökologischen Obstbau. Mitt d Obstbauversuchsringes d Alten Landes 59:349–356

    Google Scholar 

  • Maxin P, Weber RWS (2011) Control of Phacidiopycnis washingtonensis storage rot of apples by hot-water treatments without the ethylene inhibitor 1-MCP. J Plant Dis Protect 118:222–224

    CAS  Google Scholar 

  • Maxin P, Weber RWS (2013a) Wirkungsweise der Heißwasserbehandlung von Äpfeln. Obstbau 39:13–15

    Google Scholar 

  • Maxin P, Weber RWS (2013b) Wirkungsspektrum der Heißwasserbehandlung von Äpfeln. Obstbau 39 (in press)

  • Maxin P, Huyskens-Keil S, Klopp K, Ebert G (2005) Control of postharvest decay in organic grown apples by hot water treatment. Acta Horticult 682:2153–2158

    Google Scholar 

  • Maxin P, Weber RWS, Lindhard Pedersen H, Wiliams M (2012a) Hot-water dipping of apples to control Penicillium expansum, Neonectria galligena and Botrytis cinerea: effects of temperature on spore germination and fruit rots. Eur J Hort Sci 77:1–9

    Google Scholar 

  • Maxin P, Weber RWS, Lindhard Pedersen H, Williams M (2012b) Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biol Technol 70:25–31

    Article  Google Scholar 

  • Nafussi B, Ben-Yehoshua S, Rodov V, Peretz J, Ozer BK, D’hallewin G (2001) Mode of action of hot-water dip in reducing decay of lemon fruit. J Agric Food Chem 49:107–113

    Article  CAS  PubMed  Google Scholar 

  • Palm G (1986) Grundlegende neue Betrachtungsweise in der Bekämpfung bedeutender pilzlicher Schaderreger im Kernobst. Mitt d Obstbauversuchsringes d Alten Landes 41:138–152

    Google Scholar 

  • Palm G, Kruse P (2005) Maßnahmen zur Verminderung der Verluste durch Fruchtfäulnis beim Apfel. Mitt d Obstbauversuchsringes d Alten Landes 60:46–52

    Google Scholar 

  • Palm G, Kruse P (2007) Verhinderung von Lagerfäulen und Lagerschorf bei Äpfeln mit Heißwasser, Hefen, 1-MCP, Calcium-Salzen und Fungiziden. Mitt d Obstbauversuchsringes d Alten Landes 62:231–236

    Google Scholar 

  • Palm G, Kruse P (2012a) Wie ist in Zukunft Lagerfäulnis zu verhindern? Mitt d Obstbauversuchsringes d Alten Landes 67:306–311

    Google Scholar 

  • Palm G, Kruse P (2012b) Untersuchungen zur Verhinderung von Lagerfäulnis bei Äpfeln durch Nacherntebehandlungen. Mitt d Obstbauversuchsringes d Alten Landes 67:342–347

    Google Scholar 

  • Pavoncello D, Lurie S, Droby S, Porat R (2001) A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogenesis-related proteins in grapefruit flavedo. Physiol Plant 111:17–22

    Article  CAS  Google Scholar 

  • Preece TF (1967) Losses of ‘Cox’s Orange Pippin’ apples during refrigerated storage in England, 1961–1965. Plant Pathol 16:176–180

    Article  Google Scholar 

  • Porat R, Pavoncello D, Peretz J, Weiss B, Daus A, Cohen L, Ben-Yehoshua S, Fallik E, Droby S, Lurie S (2000a) Induction of resistance to Penicillium digitatum and chilling injury in ‘Star Ruby’ grapefruit by a short hot-water rinse and brushing treatment. J Hort Sci Biotechnol 75:428–432

    Google Scholar 

  • Porat R, Daus A, Weiss B, Cohen L, Fallik E, Droby S (2000b) Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biol Technol 18:151–157

    Article  Google Scholar 

  • Poulsen ME, Naef A, Gasser S, Christen D, Rasmussen PH (2009) Influence of different disease control pesticide strategies on multiple pesticide residue levels in apple. J Hort Sci Biotechnol 84:58–61

    Google Scholar 

  • Rosenberger DA (1990a) Blue Mold. In: Jones AL, Aldwinckle HS (eds) Compendium of Apple and Pear Diseases. APS Press, St. Paul, pp 54–55

  • Rosenberger DA (1990b) Gray Mold. In: Jones AL, Aldwinckle HS (eds) Compendium of Apple and Pear Diseases. APS Press, St. Paul, pp 55–56

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Plant 103:437–441

    Article  CAS  Google Scholar 

  • Schirmer H, Trierweiler B, Tauscher B (2000) Heißwasserbehandlung—eine Methode zur Reduzierung der Fruchtfäule an Bio-Äpfeln? Obstbau 25:619–621

    Google Scholar 

  • Schirra M, D’hallewin G, Ben-Yehoshua S, Fallik E (2000) Host-pathogen interactions modulated by heat treatment. Postharvest Biol Technol 21:71–85

    Article  Google Scholar 

  • Schulte E (1997) Bitterfäule des Apfels—Infektion, Infektionsbedingungen, Auftreten im Lager, Bekämpfung. PhD Thesis, University of Hanover, Germany

  • Sharples IRO (1967) The effect of a post-harvest heat-treatment on the storage behaviour of Cox’s Orange Pippin apple fruits. Ann Appl Biol 59:401–406

    Article  Google Scholar 

  • Shi Y, Correll JC, Guerber JC, Rom CR (1996) Frequency of Colletotrichum species causing bitter rot of apple in the Southeastern United States. Plant Dis 80:692–696

    Article  Google Scholar 

  • Tahir I (2006) Control of pre- and postharvest factors to improve apple quality and storability. PhD Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden

  • Tahir I, Johansson E, Olsson ME (2009) Improvement of apple quality and storability by a combination of heat treatment and controlled atmosphere storage. HortSci 44:1648–1654

    Google Scholar 

  • Trierweiler B, Gräf V, Schirmer H, Tauscher B (2003) Thermo-Behandlung ökologisch produzierter Äpfel zur Verbesserung der Lagerfähigkeit. Frischelogistik 1:34–36

    Google Scholar 

  • Vorstermans B, Creemers P (2007) Screening preharvest/postharvest strategies to prevent fruit rot decay. Commun Agric Appl Biol Sci 72:909–915

    CAS  PubMed  Google Scholar 

  • Wang CY, Bowen JH, Weir IE, Allan AC, Ferguson IB (2001) Heat-induced protection against death of suspension-cultured apple fruit cells exposed to low temperature. Plant Cell Environ 24:1199–1207

    Article  CAS  Google Scholar 

  • Weber RWS (2011) Phacidiopycnis washingtonensis, cause of a new storage rot of apples in Northern Europe. J Phytopathol 159:682–686

    Article  Google Scholar 

  • Weber RWS (2012) Mikroskopische Methode zum Nachweis pathogener Pilze auf Fruchtmumien von Äpfeln. Erwerbs-Obstbau 54:171–176

    Article  Google Scholar 

  • Weber RWS, Dralle N (2013) Fungi associated with blossom-end rot of apples in Northern Germany. Eur J Hort Sci 78:97–105

    Google Scholar 

  • Weber RWS, Holthusen HHF (2013) Sporen von Penicillium expansum im Wasser der Schwemmentleerung von Äpfeln. Mitt d Obstbauversuchsringes d Alten Landes 68:222–223

    Google Scholar 

  • Woolf AB, Wexler A, Prusky D, Kobiler E, Lurie S (2000) Direct sunlight influences postharvest temperature responses and ripening of five avocado cultivars. J Amer Soc Hort Sci 125:370–376

    Google Scholar 

  • Xiao CL, Rogers JD, Kim YK, Liu Q (2005) Phacidiopycnis washingtonensis—a new species associated with pome fruits from Washington State. Mycologia 97:464–473

    Article  CAS  PubMed  Google Scholar 

  • Xu X-M, Robinson JD (2000) Epidemiology of brown rot (Monilinia fructigena) on apple: infection of fruits by conidia. Plant Pathol 49:201–206

    Article  Google Scholar 

  • Xu X-M, Robinson JD (2010) Effects of fruit maturity and wetness on the infection of apple fruit by Neonectria galligena. Plant Pathol 59:542–547

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anette and Stig Sørensen (Dept. of Food Science, University of Aarhus) for expert technical assistance, Carsten Sørensen (Innotheque APS, Middelfart, Denmark) for help with the construction of prototype equipment, and many Northern German apple growers for fruit donations. Our recent research activities on HWTs have been funded by several sources, including ‘ISAFRUIT’ (project no. 016279), ‘Bæredygtig fremtid for dansk konsumfrugt’ (Danish Ministry of Agriculture, project no. 3412-09-02385), Plan Danmark Fund, and ‘KLIMZUG-NORD’ (German Ministry of Science and Education, project no. 01R0805M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland W. S. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxin, P., Williams, M. & Weber, R. Control of Fungal Storage Rots of Apples by Hot-Water Treatments: A Northern European Perspective. Erwerbs-Obstbau 56, 25–34 (2014). https://doi.org/10.1007/s10341-014-0200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-014-0200-z

Keywords

Schlüsselwörter

Navigation