Skip to main content
Log in

Linking variety-dependent root volatile organic compounds in maize with differential infestation by wireworms

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Like most phytophagous insect pests, wireworms are suspected to use plant volatile organic compounds (VOCs) to locate appropriate host plants. Preliminary field observations at our study site showed strong differences in the infestation level of four varieties of maize by wireworms. We raised and tested the hypothesis that these maize varieties have differential susceptibility/attraction to wireworms because they emit different VOCs from their roots. We collected, separated, identified and quantified VOCs from the roots of two maize varieties having experienced contrasted levels of wireworm infestation in the field. We showed that the less susceptible variety released a more diverse blend of VOCs, including large amounts of hexanal, heptanal and 2,3-octenanedione. The higher diversity and concentration of VOCs could play a role on the pest repulsion, explaining the difference in susceptibility of variety with respect to the other one. Laboratory dual-choice bioassays showed that wireworms were strongly attracted to COV released by maize roots. However, when wireworms were offered both maize varieties, no preference was detected, contrasting with the field results. Therefore, VOCs may not be the only cues influencing host selection by wireworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballhorn DJ, Kautz S, Schädler M (2013) Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia 172(3):833–846

    PubMed  Google Scholar 

  • Barsics F, Haubruge E, Verheggen F (2013) Wireworms’ management: an overview of the existing methods, with particular regards to Agriotes spp. (Coleoptera: Elateridae). Insects 4(1):117–152

    PubMed  PubMed Central  Google Scholar 

  • Barsics F, Delory BM, Delaplace P, Francis F, Fauconnier ML, Haubruge E, Verheggen FJ (2017) Foraging wireworms are attracted to root-produced volatile aldehydes. J Pest Sci 90(1):69–76

    Google Scholar 

  • Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2017) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci 90(2):479–493

    Google Scholar 

  • Bruce TJ, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10(6):269–274

    CAS  Google Scholar 

  • Carroll MJ, Schmelz EA, Meagher RL, Teal PE (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J Chem Ecol 32(9):1911–1924

    CAS  PubMed  Google Scholar 

  • Chiriboga X, Guo H, Campos-Herrera R, Röder G, Imperiali N, Keel C, Maurhofer M, Turlings TC (2018) Root-colonizing bacteria enhance the levels of (E)-β-caryophyllene produced by maize roots in response to rootworm feeding. Oecologia 187(2):459–468

    Google Scholar 

  • Cocquempot C, Martinez M, Courbon R, Blanchet A, Caruhel P (1999) Nouvelles données sur l’identification des larves de taupins (Coleoptera: Elateridae): une aide à la connaissance biologique et à la cartographie des espèces nuisibles. In: Proceedings of ANPP-5ème conférence internationale sur les ravageurs en agriculture, Montpellier, France, pp 477–486

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    PubMed  Google Scholar 

  • Delory BM, Delaplace P, Fauconnier ML, Du Jardin P (2016) Root-emitted volatile organic compounds: can they mediate belowground plant–plant interactions? Plant Soil 402(1–2):1–26

    CAS  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15(3):167–175

    CAS  PubMed  Google Scholar 

  • Doane JF, Klingler J (1978) Location of CO2-receptive sensilla on larvae of the wireworms Agriotes lineatus-obscurus and Limonius californicus. Ann Entomol Soc Am 71(3):357–363

    Google Scholar 

  • Doane JF, Lee YW, Westcott ND, Klingler J (1975) The orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. Can Entomol 107:1233–1252

    Google Scholar 

  • Erb M, Robert CA, Hibbard BE, Turlings TC (2011) Sequence of arrival determines plant-mediated interactions between herbivores. J Ecol 99(1):7–15

    Google Scholar 

  • Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Pare PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220(6):900–909

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). FAOSTAT database from http://faostat3.fao.org/home/E. Accessed 27 June 2018

  • Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128(9–10):696–706

    Google Scholar 

  • Furlan L (2014) IPM thresholds for Agriotes wireworm species in maize in Southern Europe. J Pest Sci 87(4):609–617

    Google Scholar 

  • Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, Du Jardin P, Verheggen F, Lognay G, Whatelet JP, Fauconnier ML (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39(8):1129–1139

    CAS  PubMed  Google Scholar 

  • Gouinguené S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TC (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31(5):1023–1038

    PubMed  Google Scholar 

  • Gregg PC, Del Socorro AP, Landolt PJ (2018) Advances in attract-and-kill for agricultural pests: beyond pheromones. Annu Rev Entomol 63:453–470

    CAS  PubMed  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306

    CAS  Google Scholar 

  • Hermann A, Brunner N, Hann P, Wrbka T, Kromp B (2013) Correlations between wireworm damages in potato fields and landscape structure at different scales. J Pest Sci 86:33–39

    Google Scholar 

  • Hibbard BE, Duran DP, Ellersieck MR, Ellsbury MM (2003) Post-establishment movement of western corn rootworm larvae (Coleoptera: Chrysomelidae) in Central Missouri corn. J Econ Entomol 96:599–608

    PubMed  Google Scholar 

  • Hiltpold I, Turlings TC (2008) Belowground chemical signaling in maize: when simplicity rhymes with efficiency. J Chem Ecol 34(5):628–635

    CAS  PubMed  Google Scholar 

  • Hiltpold I, Erb M, Robert CAM, Turlings TCJ (2011) Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant Cell Environ 34:1267–1275. https://doi.org/10.1111/j.1365-3040.2011.02327.x

    Article  CAS  PubMed  Google Scholar 

  • Jactel H, Verheggen F, Thiéry D, Escobar-Gutiérrez AJ, Gachet E, Desneux N, Neonicotinoids Working Group (2019) Alternatives to neonicotinoids. Environ Int 129:423–429

    PubMed  Google Scholar 

  • Johnson SC, Gregory PJ (2006) Chemically-mediated host plant location and selection by root-feeding insects. Physiol Entomol 31:1–13

    CAS  Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614

    CAS  PubMed  Google Scholar 

  • Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol Entomol 35(2):186–191

    CAS  Google Scholar 

  • Klingler J (1957) Über die Bedeutung des Kohlendioxyds für die Orientierung der Larven von Otiorrhynchus sulcatus F., Melolontha und Agriotes (Col.) im Boden (Vorläufige Mitteilung). Mitt. Schweiz Entom Ges 30:317–322

    Google Scholar 

  • la Forgia D, Verheggen F (2017) The law of attraction: identification of volatiles organic compounds emitted by potatoes as wireworms attractants. Commun Agric Appl Biol Sci 82(2):167–169

    Google Scholar 

  • la Forgia D, Verheggen F (2019) Biological alternatives to pesticides to control wireworms. Aggene 11:100080

    Google Scholar 

  • Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC, Vassão DG, Gershenzond J, Wolfendere JC, Turlings TJC, Erb M, Glauser G (2014) 3-β-D-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1, 4-benzoxazin-3-ones. Phytochemistry 102:97–105

    CAS  PubMed  Google Scholar 

  • Maga JA (1981) Mushroom flavor. J Agric Food Chem 29(1):1–4

    CAS  Google Scholar 

  • Perry LG, Alford ER, Horiuchi J, Paschke MW, Vivanco JM (2007) Chemical signals in the rhizosphere: root–root and root–microbe communication. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. CRC Press, Boca Raton, pp 297–330

    Google Scholar 

  • Rasmann S, Bauerle TL, Poveda K, Vannette R (2011) Predicting root defence against herbivores during succession. Funct Ecol 25(2):368–379

    Google Scholar 

  • Robert CA, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TC (2012) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194(4):1061–1069

    CAS  PubMed  Google Scholar 

  • Schumann M, Ladin ZS, Beatens JM, Hiltpold I (2018) Navigating on a chemical radar: usage of root exudates by foraging Diabrotica virgifera virgifera larvae. J Appl Entomol 142:911–920

    Google Scholar 

  • Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308

    CAS  PubMed  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175(3):417–424

    CAS  PubMed  Google Scholar 

  • Traugott M, Benefer CM, Blackshaw RP, van Herk WG, Vernon RS (2015) Biology, ecology, and control of elaterid beetles in agricultural land. Annu Rev Entomol 60:313–334

    CAS  PubMed  Google Scholar 

  • Van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265

    PubMed  Google Scholar 

  • Van Herk WG, Vernon RS (2014) Soil bioassay for studying behavioral responses of wireworms (Coleoptera: Elateridae) to insecticide-treated wheat seed. Environ Entomol 36(6):1441–1449

    Google Scholar 

  • Van Herk WG, Vernon RS, Vojtko B, Snow S, Fortier J, Fortin C (2015) Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. J Pest Sci 88(4):717–739

    Google Scholar 

  • Vernon RS (2005) Aggregation and mortality of Agriotes obscurus (Coleoptera: Elateridae) at insecticide-treated trap crops of wheat. J Econ Ent 98:1999–2005

    Google Scholar 

  • Vernon RS, Kabaluk T, Behringer A (2000) Movement of Agriotes obscurus (Coleoptera: Elateridae) in strawberry (Rosaceae) plantings with wheat (Gramineae) as a trap crop. Can Entomol 132(2):231–241

    Google Scholar 

  • Vernon RS, van Herk WG, Clodius M, Tolman J (2016) Companion planting attract-and-kill method for wireworm management in potatoes. J Pest Sci 89(2):375–389

    Google Scholar 

  • Veyrat N, Robert CAM, Turlings TCJ, Erb M (2016) Herbivore intoxication as a potential primary function of an inducible volatile plant signal. J Ecol 104(2):591–600

    CAS  Google Scholar 

  • Zeng SR (2014) Allelopathy—the solution is indirect. J Chem Ecol 40:515–516. https://doi.org/10.1007/s10886-014-0464-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. la Forgia is supported by a Ph.D. Grant from Coordinated Integrated Pest Management in Europe (C-IPM), project ElatPro. The authors thank Mickaël Gaillard for scientific support, and Rhoxane Schelkens and Shannon Thiery for technical assistance. We thank the anonymous reviewers for their constructive comments that helped improve this manuscript.

Funding

This study was funded by a Coordinated Integrated Pest Management in Europe (C-IPM) project, called ElatPro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Verheggen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. Just invertebrates (insects) were used.

Additional information

Communicated by C. M. Benefer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

la Forgia, D., Thibord, JB., Larroudé, P. et al. Linking variety-dependent root volatile organic compounds in maize with differential infestation by wireworms. J Pest Sci 93, 605–614 (2020). https://doi.org/10.1007/s10340-019-01190-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-019-01190-w

Keywords

Navigation